Designing Concurrent Distributed
Sequence Numbers for Elasticsearch

Boaz |eskes
@bleskes

Sequence numbers - Why'?

Document level versioning

PUT tweets/tweet/605260098835988500

{
"created _at": "Mon Jun 01 06:30:27 +0000 2015",
"1d": 605260098835988500,
"text": "Looking forward for awesomeness #bbuzz”
"user": {
"name": "Boaz Leskes',
"'screen_name": "bleskes",
I3
s
{
" index": "tweets",

" type": "tweet",
" 1d": "605260098835988500",
" version": 3,

Multiple doc updates

PUT tweets/tweet/605260098835988500

{
.'.'.text": Y
"user": { PUT tweets/tweet/426674590560305150
"name'": '"Boaz Leskes'{
"screen_name": "blesl 3
¥ "text": ".",
¥ "hcer": {
PUT tweets/tweet/605260098835988500 :,Lﬁzﬁgzkésu
{ ' '
.'.'.text": Y
"user": {
"name': "Boaz Leskes",
"'screen_name": "bleskes",
o

"retweet_count": 1

Multiple doc updates - with seg#

PUT tweetS/tweet/60526009883598850? 2

{
ﬁtext": R
"user': { PUT tweets/tweet/42667459056030515¢
"name": '"Boaz Leskes'{
"screen_name": "blesl 3
g "text": ".",
} "1ger": {
PUT tweets/tweet/605260098835988500 :-Lﬁéﬁiikésn
{ 3 '
.'.'.text": Y
"user": {
"name': "Boaz Leskes",
"'screen_name": "bleskes",
o

"retweet_count": 1

Sequence # == ordering of changes

* meaning they can be sorted, shipped, replayed

RFC: Changes API #440

clintongormliey opened this issue on Nov 1, 2014 - 12 comments

' clintongormiey commeniad on Nov 1, 2014

The changes API allows a user to “follow" an index. First it returns all of the existing documents, much like
the scroll API, but then it allows the user to continue listening for newer changes.

Note: The changes API depends on sequence 1Ds (#125).
Registering a listener
First, the user registers their _changes listener (defaults settings shown for clarity).

POST /{indices}/{types}/_changes/register

{
“size": 10, # return 10 results per shard
"filter": { # return all results in the index
"match_all": {}
},

" _source": true, # return the full source
"timeout": "60s" # inactivity timeout

Primary Replica Sync

Primary Replica
5
4 4
3 3

Primary Replica File Based Sync

Primary Replica
5
4 4
3 3

Primary Replica File Based Sync

Primary Replica
5
4 4
3 3

Primary Replica Seg# Based Sync

Primary Replica
5
4 4
3 3

Indexing essentials

Indexing essentials

OP

4 node 1

~

1R

" node2)

Indexing essentials

OP

4 node 1

~

" node2)

Indexing essentials

" node 1 m

OP

-

_

1R

~N

/

—

Indexing essentials

" node 1 m

OP

1R

Indexing essentials

" node 1 m

OP

Indexing essentials

" node 1 m

OP

Concurrent Indexing

Replica
[)
Primary
()
. J
Replica
()
. J

Concurrent Indexing

Replica

Primary "

Concurrent Indexing

Replica
[1)
Primary 2
m——} 1 . J
2 Replica
(1)
. J

Concurrent Indexing

Replica

Primary

Concurrent Indexing

Replica

Requirements

» Correct :)
» Fault tolerant
» Support concurrency

Consistency Algorithm

Raft Consensus Algorithm

» Bulilt to be understandable

- Leader based

* Modular (election + replication)

» See https://raftconsensus.github.io/

» Used by Facebook’s HBase port &
Algolia for data replication

https://raftconsensus.github.io/

Raft - appendEntries

Replica
4 1 R
Pri 2
mary tq.qt2 A
1
2

Raft - commit on quorum

Replica
(1 N
P | 2
mary e
r 1 “

Raft - broadcast™ commit

Replica

Primary 2
r N c=/)
" _ J
2
_ J

Raft - primary failure

Replica
4 1)
Primary 2
(1 N\ 3

t-1:2,t:3_~

Raft - ack on quorum

Replica
4 1 N
Primary X
é 1 N - 3
t-1 22,’[:3

+—— get3

Raft - primary failure

Replica
4 1 N
Primary X
[1 N - 3
{-1 :2,t:3
3

Raft - primary failure

Replica

Raft - concurrent indexing”?

Replica
(1 A
Primary t-1:1,1:2 2
(1 N\
2
3

Raft

» Simple to understand

» Quorum means:
- Lagging shards don’t slow down indexing

but
- Read visiblility issues
- Tolerates up to quorum - 1 failures
- Needs at least 3 copies for correctness
- Challenges with concurrency

Master-Backup replication

Master Backup Replication

» Leader based
» Writes to all copies before ack-ing.

- Used by Elasticsearch, Kafka,
RAMCloud (and many others)

Master-Backup - indexing

Replica

Primary "

Master-Backup - indexing

Replica

Primary "

Master-Backup - concurrency/failure

Replica

Primary "

Master-Backup - concurrency/failure

Replica

Master-Backup replication

» Simple to understand

» Write to all before ack means:
* No read visibility issues
» Tolerates up to N-1 failures

but
* A lagging shard slows indexing down (until failed)
- Easier to work with concurrency
* Rollbacks on failure are more frequent
* No clear commit point

Failure, Rollback and Commitment

3 histories

Primary Replica Replica

— N W H~ O
— N W H~ O
— N W H~ O

Failure, Rollback and Commitment

Primary Replica Replica

9 9 9
: :
7 7

6 6
5 ; 5
4 4 4
3 3 3
2 2 2
1 1 1

Failure, Rollback and Commitment

Primary Replica Replica
9 9
8
=
6
5 5
4 4
3 3
2 2
1 1

Primary knows what’s “safe”

Primary Replica Replica

9 9 9
3 3
; 12
o 0
5 | 3 5
4 4 4
3 3 3
2 2 2
1 1 1

Replicas have a lagging “safe” point

Primary Replica Replica

(O ‘
O

oo

N ‘

—LI\)OO-hU‘IICD\ICD(O

—LI\)OO-th‘I
—LI\)OO-hC)‘IIOB

Final words

 Design is pretty much nailed down

- Working on the nitty-gritty
Implementation details

| elastic / elasticsearch @ Unwatch ~ 1,180 dr Unstar 11410 Y Fork 36
Add Sequence Numbers to write operations #10/0% B New issue |
¢
bleskes opened this issue on Apr 21 - 1 comment
(
. bleskes commentad on Apr 21 Owner - '
'\
Introduction ’
An Elasticsearch shard can receive indexing, update, and delete commands. Those changes are applied "
first on the primary shard, maintaining per doc semantics and are then replicated to all the replicas. All
these operations happen concurrently. While we maintain ordering on a per doc basis, using versioning - 3
support there is no way to order them with respect to each other. Having such a per shard operation No milestone
ordering will enable us to implement higher level features such as Changes API (follow changes to
documents in a shard and index) and Reindexing API (take all data from a shard and reindex it into Assignee
another, potentially mutating the data). Internally we could use this ordering to speed up shard recoveries, No one—assign yourself

by identifying which specific operations need to be replayed to the recovering replica instead of falling

thank you!

https://github.com/elastic/elasticsearch

https://elastic.co

http://elasticsearch.com/support
https://github.com/elastic/elasticsearch

