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• Big data analytics / machine learning 

• 6+ years with Hadoop ecosystem 

• 2 years with Spark 

• http://atigeo.com/

• A research group that focuses on the technical 
problems that exist in the big data industry and 
provides open source solutions 
• http://bigdataresearch.io/

http://atigeo.com/
http://bigdataresearch.io/
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• Intro 

• Use Case 

• Data pipeline with Spark 

• Spark Job Rest Service   

• Spark SQL Rest Service (Jaws) 

• Parquet 

• Tachyon 

• Demo

Agenda
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• Build an in memory data pipeline for millions 
financial transactions used downstream by 
data scientists for detecting fraud 
•  Ingestion from S3 to our Tachyon/HDFS 

cluster 
•  Data transformation 
•  Data warehouse 

Use Case
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• “fast and general engine for large-scale 
data processing” 
• Built around the concept of RDD 
• API for Java/Scala/Python (80 operators) 

•  powers a stack of high level tools including 
Spark SQL, MLlib, Spark Streaming.

Apache Spark
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Public S3 Bucket: public-financial-transactions 

public-financial-
transactions 
(s3-bucket)

scheme scheme.csv

data input-0.csv

data2

input-1.csv

. . .

. . .
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• Download from S3

1. Ingestion

• Resolving the wildcards means listing files 
metadata

• Listing the metadata for a large number 
of files from external sources can take a 
long time
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Listing the metadata (distributed)

Driver

Worker Worker Worker

folder1 
folder2 
folder3 
folder4 
folder5 
folder6

folder1 
folder2

folder3 
folder4

folder5 
folder6

file-11 
file-12 
file-21 
file-22 
file-23

file-31 
file-32 
file-41 
file-42 
file-43 
file-44

file-51 
file-52 
file-61



‹#›

Listing the metadata (distributed)

• For fine tuning, specify the number of partitions
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• Unbalanced partitions

Download Files
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Unbalanced partitions

Partition 0 

transactions.csv

Partition 1 

input.csv 
data.csv 

values.csv 
buzzwords.csv 
buzzwords.txt
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Balancing partitions

Partition 0 

(0, transactions.csv) 
(2, data.csv) 

(4, buzzwords.csv)

Partition 1 

(1, input.csv) 
(3, values.csv) 

(5, buzzwords.txt)
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• Balancing partitions 

Keep in mind that repartitioning your data is a 
fairly expensive operation.

Balancing partitions
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• Data cleaning is the first step in any data 
science project 

• For this use-case: 
- Remove lines that don't match the structure 
- Remove “useless” columns 
- Transform data to be in a consistent format

2. Data Transformation
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• Join 

Find Country char code

Numeric Format Alpha 2 Format

276 DE

Name
Germany

• Problem with skew in the key distribution
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Metrics for Join
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• Broadcast Country Codes Map 

Find Country char code
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Metrics
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Transformation with  
Join vs Broadcasted Map 

(skewed key)
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Join Broadcasted Map
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• Supports multiple contexts 
• Launches a new process for each Spark context 
• Inter-process communication with Akka actors 
• Easy context creation & job runs 
• Supports Java and Scala code 
• Friendly UI

Spark-Job-Rest
https://github.com/Atigeo/spark-job-rest

https://github.com/Atigeo/spark-job-rest
https://github.com/Atigeo/spark-job-rest
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• Hive 
• Apache Pig 
• Impala 
• Presto 
• Stinger (Hive on Tez)  
• Spark SQL

Build a data warehouse
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Spark SQL

• Support for multiple 
input formats 

• Rich language interfaces

• RDD-aware optimizer

RDD

DataFrame / SchemaRDD

JDBC

HIVE QL SQL
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Creating a data frame
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Perform a simple query:
Explore data

> Directly on the data frame

> Registering a temporary table

- select 

- filter 

- join

- groupBy 

- agg 

- join

- count 

- sort 

- where ..etc.
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Creating a data warehouse

https://github.com/Atigeo/xpatterns-spark-parquet

https://github.com/Atigeo/xpatterns-spark-parquet
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• TextFile 

• SequenceFile 

• RCFile (RowColumnar) 

• ORCFile (OptimizedRowColumnar) 

• Avro 

• Parquet

File Formats

> columnar format 
> good for aggregation queries 
> only the required columns are read from disk 
> nested data structures 
> schema with the data 
> spark sql supports schema evolution 
> efficient compression
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   Tachyon
• memory-centric distributed file system 

enabling reliable file sharing at memory-speed 
across cluster frameworks 

• Pluggable underlayer file system: hdfs, S3,…
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Caching in Spark SQL

• Cache data in columnar format 
• Automatically compression tune 
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• spark context might crash

Spark cache vs Tachyon

• GC kicks in

• share data between different applications
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- Highly scalable and resilient data warehouse 

- Submit queries concurrently and asynchronously 

-  Restful alternative to Spark SQL JDBC having a 
interactive UI 

- Since Spark 091 with Shark 

- Support for Spark SQL and Hive - MR (and more to 
come) 

https://github.com/Atigeo/jaws-spark-sql-rest 

Jaws spark sql rest

https://github.com/Atigeo/jaws-spark-sql-rest
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- Akka actors to communicate through instances 

- Support cancel queries 

- Supports large results retrieval 

- Parquet in memory warehouse  

- returns persisted logs, results, query history  

- provides a metadata browser 

- configuration file to fine tune spark

Jaws main features
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https://github.com/big-data-research/in-memory-data-pipeline

Code available at

https://github.com/big-data-research/in-memory-data-pipeline
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Q & A
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