
Radu Chilom

radu.chilom@gmail.com

In-memory data pipeline
and warehouse at scale
using Spark, Spark SQL,

Tachyon and Parquet

Buzzwords Berlin - 2015

Ema Iancuta

iorhian@gmail.com

mailto:radu.chilom@gmail.com
mailto:iorhian@gmail.com

‹#›

• Big data analytics / machine learning

• 6+ years with Hadoop ecosystem

• 2 years with Spark

• http://atigeo.com/

• A research group that focuses on the technical
problems that exist in the big data industry and
provides open source solutions
• http://bigdataresearch.io/

http://atigeo.com/
http://bigdataresearch.io/

‹#›

• Intro

• Use Case

• Data pipeline with Spark

• Spark Job Rest Service

• Spark SQL Rest Service (Jaws)

• Parquet

• Tachyon

• Demo

Agenda

‹#›

• Build an in memory data pipeline for millions
financial transactions used downstream by
data scientists for detecting fraud
• Ingestion from S3 to our Tachyon/HDFS

cluster
• Data transformation
• Data warehouse

Use Case

‹#›

• “fast and general engine for large-scale
data processing”
• Built around the concept of RDD
• API for Java/Scala/Python (80 operators)

• powers a stack of high level tools including
Spark SQL, MLlib, Spark Streaming.

Apache Spark

‹#›

Public S3 Bucket: public-financial-transactions

public-financial-
transactions
(s3-bucket)

scheme scheme.csv

data input-0.csv

data2

input-1.csv

. . .

. . .

‹#›

• Download from S3

1. Ingestion

• Resolving the wildcards means listing files
metadata

• Listing the metadata for a large number
of files from external sources can take a
long time

‹#›

Listing the metadata (distributed)

Driver

Worker Worker Worker

folder1
folder2
folder3
folder4
folder5
folder6

folder1
folder2

folder3
folder4

folder5
folder6

file-11
file-12
file-21
file-22
file-23

file-31
file-32
file-41
file-42
file-43
file-44

file-51
file-52
file-61

‹#›

Listing the metadata (distributed)

• For fine tuning, specify the number of partitions

‹#›

• Unbalanced partitions

Download Files

‹#›

Unbalanced partitions

Partition 0

transactions.csv

Partition 1

input.csv
data.csv

values.csv
buzzwords.csv
buzzwords.txt

‹#›

Balancing partitions

Partition 0

(0, transactions.csv)
(2, data.csv)

(4, buzzwords.csv)

Partition 1

(1, input.csv)
(3, values.csv)

(5, buzzwords.txt)

‹#›

• Balancing partitions

Keep in mind that repartitioning your data is a
fairly expensive operation.

Balancing partitions

‹#›

• Data cleaning is the first step in any data
science project

• For this use-case:
- Remove lines that don't match the structure
- Remove “useless” columns
- Transform data to be in a consistent format

2. Data Transformation

‹#›

• Join

Find Country char code

Numeric Format Alpha 2 Format

276 DE

Name
Germany

• Problem with skew in the key distribution

‹#›

Metrics for Join

‹#›

• Broadcast Country Codes Map

Find Country char code

‹#›

Metrics

‹#›

Transformation with
Join vs Broadcasted Map

(skewed key)

Se
co

nd
s

0

60

120

180

240

300

Rows

1 Million 2 Million 3 Million

Join Broadcasted Map

‹#›

• Supports multiple contexts
• Launches a new process for each Spark context
• Inter-process communication with Akka actors
• Easy context creation & job runs
• Supports Java and Scala code
• Friendly UI

Spark-Job-Rest
https://github.com/Atigeo/spark-job-rest

https://github.com/Atigeo/spark-job-rest
https://github.com/Atigeo/spark-job-rest

‹#›

• Hive
• Apache Pig
• Impala
• Presto
• Stinger (Hive on Tez)
• Spark SQL

Build a data warehouse

‹#›

Spark SQL

• Support for multiple
input formats

• Rich language interfaces

• RDD-aware optimizer

RDD

DataFrame / SchemaRDD

JDBC

HIVE QL SQL

‹#›

Creating a data frame

‹#›

Perform a simple query:
Explore data

> Directly on the data frame

> Registering a temporary table

- select

- filter

- join

- groupBy

- agg

- join

- count

- sort

- where ..etc.

‹#›

Creating a data warehouse

https://github.com/Atigeo/xpatterns-spark-parquet

https://github.com/Atigeo/xpatterns-spark-parquet

‹#›

• TextFile

• SequenceFile

• RCFile (RowColumnar)

• ORCFile (OptimizedRowColumnar)

• Avro

• Parquet

File Formats

> columnar format
> good for aggregation queries
> only the required columns are read from disk
> nested data structures
> schema with the data
> spark sql supports schema evolution
> efficient compression

‹#›

 Tachyon
• memory-centric distributed file system

enabling reliable file sharing at memory-speed
across cluster frameworks

• Pluggable underlayer file system: hdfs, S3,…

‹#›

Caching in Spark SQL

• Cache data in columnar format
• Automatically compression tune

‹#›

• spark context might crash

Spark cache vs Tachyon

• GC kicks in

• share data between different applications

‹#›

- Highly scalable and resilient data warehouse

- Submit queries concurrently and asynchronously

- Restful alternative to Spark SQL JDBC having a
interactive UI

- Since Spark 091 with Shark

- Support for Spark SQL and Hive - MR (and more to
come)

https://github.com/Atigeo/jaws-spark-sql-rest

Jaws spark sql rest

https://github.com/Atigeo/jaws-spark-sql-rest

‹#›

- Akka actors to communicate through instances

- Support cancel queries

- Supports large results retrieval

- Parquet in memory warehouse

- returns persisted logs, results, query history

- provides a metadata browser

- configuration file to fine tune spark

Jaws main features

‹#›

https://github.com/big-data-research/in-memory-data-pipeline

Code available at

https://github.com/big-data-research/in-memory-data-pipeline

‹#›

Q & A

© 2013 Atigeo, LLC. All rights reserved. Atigeo and the xPatterns logo are trademarks of Atigeo. The information herein is for informational purposes only and represents the current view of Atigeo as of
the date of this presentation. Because Atigeo must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Atigeo, and Atigeo cannot guarantee the
accuracy of any information provided after the date of this presentation. ATIGEO MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

