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About Yammer

An Enterprise Social Network whose aim is to facilitate
better and faster communication within an organization.
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Yammer’s Architecture

Core Services Dependency Diagram

Last updated: May 16, 2013
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Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:

Cl — Team City and Jenkins

Deployment — homegrown DW service

Analytics — homegrown service for querying across
multiple DBs

Metrics — DW metrics, Kafka based collection pipeline
and Wavefront for visualization

Log aggregation (Logstash + Kibana)
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What we wanted change and why

o Extract Inbox feature from an existing service, that
powered all messaging feeds
* To enable faster iteration on Inbox

 Find an alternative to a legacy DB that:
— expensive to scale,
— had a bad support story
—wasn’t great for a cross-DC setup
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Goal

So what part of the system did we want to change and
how?
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Methodology

e Capture the APl and semantics in integration tests

» Use production traffic to capacity plan and load test
— shadow deploy and double dispatch
— migrate data early
— run verification tasks

 Assume we are going to make mistakes, so make data
migration cheap:

— bad modeling
— missed use cases
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What we knew

* Inbox Is read heavy: 500min requests/day
* \We fan-out on write:
— 50min individual user deliveries/day
— *announcements spikes” of up to 300K deliveries from one msg

* \We needed tech that will be good for reads, but could
also provide RT delivery in face of massive fan-outs.
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e have a support story



First Phase — Choose the DB

We considered Riak and Cassandra as both:
e are sharded and replicated,
e work well cross-DC, and

e have a support story

We chose Cassandra over Riak because it did not force us
to do a Read-Modify-Write of the whole inbox on message
delivery.



Second Phase

Get something working!

Provision Hardware

Decide on a RESTful service API

Get a build that tests the API and hits Cassandra
Start implementing against our data model
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Inbox - how It works?

o Stores threads addressed/watched by the user

* Threads ordered by most recently replied to

 Thread contents isn’t actually stored in this service

« On message post:
— we deliver the message to every inbox
— this amounts to updating | ast _nessage |1 d

e Onread:

— paginate (most recent messages first)
— filter (read/unread)
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First Design

Inbox Table:

e Partitioned by: 1 nbox 1 d

 Primary keyed: (1 nbox 1d, |ast nessage |d)
e Secondary indices for filtering, e.g. (I s_r ead)

Thread Table:
e Secondary Index partitioned by: t hread |1 d
e Used for storing thread metadata needed for delivery

 Heavily used CRDT sets
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o It fitted well with our usage patterns
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First Design

It was great:
 All our tests were passing and we covered for all the

edge cases
o |t fitted well with our usage patterns
It was self healing in the presence of out-of-order

deliveries or system partitions

Except that.... it brought our migration task to a halt.
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First Design — What went wrong

We discovered that:

e Secondary indices are slow as hell!

e CRDTs are OKish for small infrequently updated things,
but not for our subscription lists.

Secondly:

 The cost of our conveniently sorted data was heavy
rellance on deletes — a NO NO In Cassandra world.
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What to do now?

We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our AP| and
that the semantics were captured in integration tests.

We could use the tests and the metrics we had to quickly
iterate on the implementation.
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Second Design

* Forget all the Cassandra Extras and design around it’s
strengths.

 Understand feature requirements better and leverage that
In your model (analytics):
—we do not need to hold all the data, just recent stuff (Search)
— 5000 entries is only 75KB, and that covers 4 years for an active

user.
— We don’t need to be that exact
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Inbox Table:

e Partitioned by: 1 nbox _1d

 Primary keyed: (1 nbox 1d, thread id)
 Mutable metadata: (s _read, | ast nessage | d)

Thread Table:
 Secondary Index partitioned by: t hread 1 d
e Used for storing thread metadata needed for delivery
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Second Design

* This will be mutation heavy: use Leveled Compaction

 There will be races on updates:
— on active threads it doesn’t matter — we just order and filter
— on less active ones, races are negligible and users can correct

 On read:
— read the whole inbox, sort and then filter
— data Is small, so it will be actually OK
— trim excess data (delete)
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Second Design

This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

However... read performance was very varied, and below
our expectations.
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What now?

Look at usage metrics in more detall.

Out of the 500min queries we see a day more than 450min
are for an unread count.

Actually, this happens to be a very small value:
e P95: <100
e P999 < 1000

Materialize this query in a separate table (Just unread stuff)
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Where did this get us?

Write latency of:
e < 100ms for regular messages
e < 10s for the massive spikey announcements

Read Latency of:

e P99 < 250ms, P999 < 500ms — for the whole inbox
e P999 < 30ms — for unread count



We shipped! — Thank You

Any Questions?
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Free months later, on the first day of my summer holiday!

Yammer Is down!

 The site Is down

e Our service Is on fire!

3 Cassandra nodes are on fire
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What went wrong?

Turns out having an HA service and an HA DB doesn't
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

Leveled compaction didn'’t like it!
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But there were deeper problems

o Our trimming strategy didn’t account for overgrowing

Inboxes iImpact on compaction.
 Our main app didn’t have circuit breakers and timeouts

* The service itself didn’t control it's resources (timeouts/
threads) to ensure HA.
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Fixes

Cassandra

e Added probabilistic and async trimming on delivery

 Dropped gc_grace _peri od and increased repair
frequency In favor of small but frequent ones.

Service
* Bulkheads: all logical service operations are time-bound
and have individual threadpools to ensure capacity.

Application: rolled out circuit breakers
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e ensuring repairs are successful

e ensuring a single bad node (not dead but very slow)
doesn’t take down the cluster



IS 1t fixed now?

We still have some pending tasks we are working on:

e ensuring repairs are successful
e ensuring a single bad node (not dead but very slow)

doesn’t take down the cluster

But importantly, with the current setup a problem in

Cassandra:
e doesn’t take the site down
e only users whose data Is on problematic nodes are

affected



What worked well

We were able to iterate and fix problems very quickly:

 Integration tests allowed us to ship to prod with
confidence

e shadow deploy gave us great feedback on design

e existing metrics/analytics aided our design choices

* having an easy to run migration allowed us to quickly
iterate on the data model
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Even for a big organization introducing a technology bears
a high cost:
e Getting a working model in prod took only 3 months

 Ironing out operations will take at least 1 year
— Understanding the system
— Firefighting and fixing
— Training



What we've learned

Even for a big organization introducing a technology bears
a high cost:
e Getting a working model in prod took only 3 months

 Ironing out operations will take at least 1 year
— Understanding the system
— Firefighting and fixing
— Training

Support helps, but the above still holds.



Thank you — this time for real

Any guestions?



