Cassandra at Yammer

ski (mrutkowski@ya

Yammers

Plan

e About Yammer

Plan

 About Yammer
 \What we wanted to change and why

Plan

 About Yammer
 \What we wanted to change and why
e How we rolled out Cassandra

Plan

 About Yammer

* \What we wanted to change and why

« How we rolled out Cassandra

 \What we’'ve learned and what worked well

About Yammer

An Enterprise Social Network whose aim is to facilitate
better and faster communication within an organization.

& Microsoft

’ d
Sl s s ft Inbox
_ Yammer Engineering % y r
) Public Group v Joined L':”)' & Rz

GROUPS We build Yamemer. It takes a lot to make a stew. Or a GROUPS Seaech my messages Search
salad. » »
: % ;i o Unread Messages (11
Yammer On-Call 20 . = = e e PR Yammer On-Call e sages (1)
Yammer Managed Stor.. 2 ——— Yammer Managed Stor... 1
Yammer Services Team 20+ O Update % Praise WM Anncuncement Yammer Serwices Team 20+
INFO

Yammer Core Services Yammer Core Sevices

528 Share something with this group Big Board 3
Yamme Engineering something with this gr 9 Yammer Engineering 20+ s

Vammer Engineering Documents
Yammer Service Oriente.. 2 » " Yammer Service Oriente., 2

Yammer Royal Engineer.
Yammer Redmond Team 20+

Yammer Royal Engineer... 20+ New conversatic

Yammer Redmond Team 20+ "
2 |

»

Yammer Reliablity Initia.., 20+
Yammer Search Domain 20+

. Yammer Search Domain 20+ '
° New conversatior
Yammer Services Team ... 20+ Cloudy Setup Yammer Services Team ... 20-
Gt and 1
. Yammer Messaging Do 20+ .

Yammer Messaging Do... 20+ Workfes

Royal Mail

Royal Mail
Yammer Royal Book Club o Yammer Royal Book Club —]

Yammer Site Reliabifity .. Yammer Site Refiability ... §

Yammer Team 20+

Yammer Team 20
ﬂ Michal Rutowshi 0., o Michat Rutkowsii L0 e
Merosoft Migrosoft New conversation

Yammer’s Architecture

Core Services Dependency Diagram

Last updated: May 16, 2013

graphie

-— feedie

flatterie

prankie

N

whoville

partie
service

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:
e Cl - Team City and Jenkins

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:
 Cl—Team City and Jenkins
 Deployment — homegrown DW service

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:

 Cl—Team City and Jenkins

 Deployment — homegrown DW service

* Analytics — homegrown service for guerying across
multiple DBs

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:

e Cl - Team City and Jenkins

 Deployment — homegrown DW service

e Analytics — homegrown service for querying across
multiple DBs

* Metrics — DW metrics, Kafka based collection pipeline
and Wavefront for visualization

Yammer’s Operational Tooling

This obviously quite complex, so we have some tooling:

Cl — Team City and Jenkins

Deployment — homegrown DW service

Analytics — homegrown service for querying across
multiple DBs

Metrics — DW metrics, Kafka based collection pipeline
and Wavefront for visualization

Log aggregation (Logstash + Kibana)

Deployment

deploymacy

Search...

WORKFEED

mcrouter
workfeed
workfeed_integration

workfeed_prod_migrations
workfeed_production_dm2

QA

qa_site
spotter
tenants

ANALYTICS

avocado

factoid

integritie
integritie-jobs
missioncontrol
CORE SERVICES

artie
choosie
completie
csp

dexie
dmstratiservice
feedie
feediecalmie
fetch

fileville

findi

flatterie

leaderboards

home = core services

royalmail

Deploy History

2015-05-28

when

23:59:43
23:29:02
20:29:25
18:52:38
18:32:59
18:21:17

18:07:16

2015-05-27
when

20:11:10

Package History

who

skim

iedirisinghe
iedirisinghe
iedirisinghe
iedirisinghe
iedirisinghe
iedirisinghe

who

vaggarwal

Package and Deploy

Package and deploy in one step

]
2
o
3

DEPLOYED

DEPLOYED

FAILED TO DEPLOY

FAILED TO DEPLOY

DEPLOYED

FAILED TO DEPLOY

FAILED TO DEPLOY

o
2
=}
=

DEPLOYED

Create a package

Package source and configuration together

package

20150528232849-7354d57-0.0.138
20150528232849-7354d57-0.0.138
20150528202912-7354d57-0.0.137
20150526130248-7354d57-0.0.136
20150526130248-7354d57-0.0.136
20150526130248-7354d57-0.0.136
20150526130248-7354d57-0.0.136

package

20150527201043-7354d57-0.0.137-SNAPSHOT

Deploy a package

Deploy an existing package

where

production

stage
production.canary
production.canary
production.new
production.new

production.new

where

stage

mrutkowski ~

Deployment

deploymacy

[Search...

leaderboards

WORKFEED

mcrouter
workfeed

workfeed_integration
workfeed_prod_migrations
workfeed_production_dm2

QA

ga_site
spotter
tenants

ANALYTICS

avocado
factoid
integritie
integritie-jobs
missioncontrol
CORE SERVICES
artie

choosie
completie

csp

dexie
dmstratiservice
feedie
feediecalmie
fetch

fileville

findi

flatterie

Status

2015-06-01

Status

SUCCESS
SUCCESS
SUCCI

SucCC

SUCC!

SUCC

SuUCC!

HOOUEERARRAGMEE

2015-06-02

Name

ing

Name

ing
mcaropreso
cshellenbarger
yammerdataci
cshellenbarger
mthompson
mthompson
mcaropreso
sjain

mobile_ci

sjain

Icharteris
pphatak
yammerdataci

cnguyen

Project

push-builder

Project

push-builder
workfeed_production_dm2
deployer

avocado

deployer

modulator

modulator

workfeed

sujay_onboarding
application_binaries_android
sujay_onboarding

deployer

turbofan

avocado

backupsclients

Version Environment

20150602000624-18c8fd2-master staging.bl2

Version Environment
20150601235609-18c8fd2-master staging.bl2
20150601231148-89cf629-r567-06- production_dm2
20150601234547-624d9d0-master production
20150601233811-6b806a4-jenkins- production
20150601233650-624d9d0-master production
20150601233220-6b5a5ee-1.30 production
20150601233220-6b5a5ee-1.30 staging.bl2
20150601231202-0449f35-master-61 staging.bl2
20150601231527-5db2141-1.4 stage
20150601231246-877f4d7-1.0.2015(staging
20150601230339-2d5a156-1.3 stage
20150601225917-624d9d0-master production
20150601225616-385512b-0.0.111-{ stage
20150601224036-6b806a4-jenkins- production

20150601223331-98f6e33-master staging

mrutkowski ~

Time

00:06:28

Time

23:56:13
23:46:01
23:45:52
23:38:29
23:36:55
23:35:23
23:33:33
23:16:43
23:15:38
23:13:17
23:03:50
22:59:38
22:56:45
22:41:01

22:34:22

Metrics

Load SLA Read Delivery Fanout Deletion Artie Unreadcount

Announcements Inboxtrimming Markoperations inboxsearch PhantomCleanups HTTP

T T T T T T T 1
06:45 07 AM 07:15 07:30 07:45 08 AM 08:15 08:30

(V] Read

Tk <

| A
| \ /
Zi:: PN A s~ \A/J N Vs \f AN

2R T e - —
— RS P —~—————

Units

10

1 T T 1 T T T T 1
06:45 07 AM 07:15 07:30 07:45 08 AM 08:15 08:30 A

What we wanted change and why

o Extract Inbox feature from an existing service, that
powered all messaging feeds

What we wanted change and why

o Extract Inbox feature from an existing service, that
powered all messaging feeds
* To enable faster iteration on Inbox

What we wanted change and why

o Extract Inbox feature from an existing service, that
powered all messaging feeds
* To enable faster iteration on Inbox

 Find an alternative to a legacy DB that:
— expensive to scale,
— had a bad support story
—wasn’t great for a cross-DC setup

Overview

Rails App

= | Rabbit MQ | = | worker | =
— 4)
e SQLDBE Distribution
- » List
G J/
<

/

Dropwizard
Java
Service

\

BDB

Write Path

Rails App

= | Rabbit MQ | = | worker | =
— 4)
e SQLDBE Distribution
- » List
G J/
<

/

Dropwizard
Java
Service

\

BDB

Write Path

4)
— [Rabbit MQ] ':>[Worker]':> Dropwizard
Java
@ Service
— 4)
¢ 2Ll Distribution
List
& /
BDB
) N~
<

Write Path

PR 4)
—) [Rabbit MQ] '::>[Worker]':> Dropwizard

Java

@ Service

| ()
<:| Distribution
List

- J

Rails App

BDB

Write Path

Rails App

~ O - (o)~

=N
e

SQL DB

g

()
Distribution
List

N\ J

/

\

Dropwizard
Java
Service

BDB

Write Path

Rails App

= |

=N
e

Rabbit MQ

SQL DB

- .-
g

/

Dropwizard
Java
Service

\

BDB

Write Path

—_ = | Rabbit MQ | = ? =

\
;:: — e
7‘_2 — SQLDB Qistribution
ad "~ \LISt /

Read Path

Rails App

= | Rabbit MQ | = worker | =
— 4)
= =0 B Distribution
.) List
- /
<

/

Dropwizard
Java
Service

\

BDB

Read Path

—> [Rabbit MQ] ':>[Worker] =
— 4)
= Sl Distribution
List
(& J

—

Read Path

| = worker | =

g

()
Distribution
List

N\ J

—> [Rabbit MQ
=
&

> ¢

-~

~

Dropwizard
Java
Service

BDB

Read Path

Rails App

= | Rabbit MQ | = worker | =
— 4)
= =0 B Distribution
.) List
- /
<

/

Dropwizard
Java
Service

\

BDB

Goal

So what part of the system did we want to change and
how?

Goal

Rails App

= | Rabbit MQ | = | worker | =
— 4)
= 2ol Bl Distribution
. J List
- /
<

/

Dropwizard
Java
Service

\

BDB

Goal

Rails App

= | Rabbit MQ = | worker |=>
— 4)
= 2ol Bl Distribution
N J List
. J
<

/

Dropwizard
Java
Service

\

BDB

Goal

—> [Worker]I:I>

¢

()
Distribution
List

_ J

/

\

Dropwizard
Java
Service

BDB

Goal

— [Worker]I:>

¢

()
Distribution
List

N\ J

/

\

Dropwizard
Java
Service

BDB

2 I
= [Worker] = Dropwizard
i Java
@ Service
g h .
N\ —/
Distribution
List
_ J 4 I
Vv Dropwizard
Java
| RabbitmMQ [Worker Jeb| B

o J

2 I
= [Worker] = Dropwizard
i Java
@ Service
g h .
N\ —/
Distribution
List
_ J 4 I
Vv Dropwizard
Java
| RabbitmMQ [Worker Jo

o J

Goal

-

Dropwizard
Java Service

~

Goal

-

Dropwizard
Java Service

~

Methodology

e Capture the APl and semantics Iin integration tests

Methodology

e Capture the APl and semantics Iin integration tests

e Use production traffic to capacity plan and load test
— shadow deploy and double dispatch
— migrate data early
— run verification tasks

Methodology

e Capture the APl and semantics in integration tests

» Use production traffic to capacity plan and load test
— shadow deploy and double dispatch
— migrate data early
— run verification tasks

 Assume we are going to make mistakes, so make data
migration cheap:

— bad modeling
— missed use cases

What we knew

* Inbox is read heavy: 500min requests/day

What we knew

* Inbox is read heavy: 500min requests/day

* \WWe fan-out on write:
— 50min individual user deliveries/day
— *announcements spikes” of up to 300K deliveries from one msg

What we knew

* Inbox Is read heavy: 500min requests/day
* \We fan-out on write:
— 50min individual user deliveries/day
— *announcements spikes” of up to 300K deliveries from one msg

* \We needed tech that will be good for reads, but could
also provide RT delivery in face of massive fan-outs.

First Phase — Choose the DB

We considered Riak and Cassandra as both:
e are sharded and replicated,

 work well cross-DC, and

e have a support story

First Phase — Choose the DB

We considered Riak and Cassandra as both:
e are sharded and replicated,
e work well cross-DC, and

e have a support story

We chose Cassandra over Riak because it did not force us
to do a Read-Modify-Write of the whole inbox on message
delivery.

Second Phase

Get something working!

Provision Hardware

Decide on a RESTful service API

Get a build that tests the API and hits Cassandra
Start implementing against our data model

Inbox - how It works?

o Stores threads addressed/watched by the user

Inbox - how It works?

o Stores threads addressed/watched by the user
e Threads ordered by most recently replied to

Inbox - how It works?

o Stores threads addressed/watched by the user

e Threads ordered by most recently replied to

 Thread contents isn’t actually stored in this service

Inbox - how It works?

o Stores threads addressed/watched by the user
e Threads ordered by most recently replied to

 Thread contents isn’t actually stored in this service

« On message post:
— we deliver the message to every inbox
— this amounts to updating | ast _nessage |1 d

Inbox - how It works?

o Stores threads addressed/watched by the user

* Threads ordered by most recently replied to

 Thread contents isn’t actually stored in this service

« On message post:
— we deliver the message to every inbox
— this amounts to updating | ast _nessage |1 d

e Onread:

— paginate (most recent messages first)
— filter (read/unread)

First Design

Inbox Table:

e Partitioned by: 1 nbox _1d

 Primary keyed: (1 nbox 1d, |ast nessage |d)
e Secondary indices for filtering, e.g. (I s_r ead)

First Design

Inbox Table:

e Partitioned by: 1 nbox 1 d

 Primary keyed: (1 nbox 1d, |ast nessage |d)
e Secondary indices for filtering, e.g. (I s_r ead)

Thread Table:
e Secondary Index partitioned by: t hread |1 d
e Used for storing thread metadata needed for delivery

 Heavily used CRDT sets

First Design

It was great:

 All our tests were passing and we covered for all the
edge cases

o It fitted well with our usage patterns

It was self healing in the presence of out-of-order
deliveries or system partitions

First Design

It was great:
 All our tests were passing and we covered for all the

edge cases
o It fitted well with our usage patterns
It was self healing in the presence of out-of-order

deliveries or system partitions

Except that....

First Design

It was great:
 All our tests were passing and we covered for all the

edge cases
o |t fitted well with our usage patterns
It was self healing in the presence of out-of-order

deliveries or system partitions

Except that.... it brought our migration task to a halt.

First Design — What went wrong

We discovered that:

e Secondary indices are slow as hell!

e CRDTs are OKish for small infrequently updated things,
but not for our subscription lists.

First Design — What went wrong

We discovered that:

e Secondary indices are slow as hell!

e CRDTs are OKish for small infrequently updated things,
but not for our subscription lists.

Secondly:

 The cost of our conveniently sorted data was heavy
rellance on deletes — a NO NO In Cassandra world.

What to do now?

We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What to do now?

We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our AP| and
that the semantics were captured Iin integration tests.

What to do now?

We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our AP| and
that the semantics were captured in integration tests.

We could use the tests and the metrics we had to quickly
iterate on the implementation.

Second Design

* Forget all the Cassandra Extras and design around it’s
strengths.

Second Design

* Forget all the Cassandra Extras and design around it’s
strengths.

 Understand feature requirements better and leverage that
In your model (analytics):
—we do not need to hold all the data, just recent stuff (Search)
— 5000 entries is only 75KB, and that covers 4 years for an active

user.
— We don’t need to be that exact

Second Design

Inbox Table:

e Partitioned by: 1 nbox _1d

 Primary keyed: (1 nbox 1d, thread id)
 Mutable metadata: (s _read, | ast nessage | d)

Second Design

Inbox Table:

e Partitioned by: 1 nbox _1d

 Primary keyed: (1 nbox 1d, thread id)
 Mutable metadata: (s _read, | ast nessage | d)

Thread Table:
 Secondary Index partitioned by: t hread 1 d
e Used for storing thread metadata needed for delivery

Second Design

* This will be mutation heavy: use Leveled Compaction

Second Design

* This will be mutation heavy: use Leveled Compaction

* There will be races on updates:
— on active threads it doesn’t matter — we just order and filter
— on less active ones, races are negligible and users can correct

Second Design

* This will be mutation heavy: use Leveled Compaction

 There will be races on updates:
— on active threads it doesn’t matter — we just order and filter
— on less active ones, races are negligible and users can correct

 On read:
— read the whole inbox, sort and then filter
— data Is small, so it will be actually OK
— trim excess data (delete)

Second Design

This time we got to production and passed the migration
step.

Second Design

This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

Second Design

This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

However... read performance was very varied, and below
our expectations.

What now?

Look at usage metrics in more detail.

What now?

Look at usage metrics in more detail.

Out of the 500min queries we see a day more than 450min
are for an unread count.

What now?

Look at usage metrics in more detail.

Out of the 500min queries we see a day more than 450min
are for an unread count.

Actually, this happens to be a very small value:
e P95: <100
 P999 < 1000

What now?

Look at usage metrics in more detall.

Out of the 500min queries we see a day more than 450min
are for an unread count.

Actually, this happens to be a very small value:
e P95: <100
e P999 < 1000

Materialize this query in a separate table (Just unread stuff)

Where did this get us?

Write latency of:
e < 100ms for regular messages
e < 10s for the massive spikey announcements

Where did this get us?

Write latency of:
e < 100ms for regular messages
e < 10s for the massive spikey announcements

Read Latency of:

e P99 < 250ms, P999 < 500ms — for the whole inbox
e P999 < 30ms — for unread count

We shipped! — Thank You

Any Questions?

Not so fast!

Free months later, on the first day of my summer holiday!

Not so fast!

Free months later, on the first day of my summer holiday!

Yammer Is down!

 The site Is down

e Our service Is on fire!

3 Cassandra nodes are on fire

What went wrong?

Turns out having an HA service and an HA DB doesn't
make your site HA!

What went wrong?

Turns out having an HA service and an HA DB doesn't
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

What went wrong?

Turns out having an HA service and an HA DB doesn't
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

Leveled compaction didn'’t like it!

But there were deeper problems

o Our trimming strategy didn’t account for overgrowing
iInboxes impact on compaction.

But there were deeper problems

o Our trimming strategy didn’t account for overgrowing
Inboxes iImpact on compaction.
 Our main app didn’t have circuit breakers and timeouts

But there were deeper problems

o Our trimming strategy didn’t account for overgrowing

Inboxes iImpact on compaction.
 Our main app didn’t have circuit breakers and timeouts

* The service itself didn’t control it's resources (timeouts/
threads) to ensure HA.

Fixes

Cassandra

e Added probabilistic and async trimming on delivery

 Dropped gc_grace _peri od and increased repair
frequency In favor of small but frequent ones.

Fixes

Cassandra

e Added probabilistic and async trimming on delivery

 Dropped gc_grace _peri od and increased repair
frequency In favor of small but frequent ones.

Service
* Bulkheads: all logical service operations are time-bound
and have individual threadpools to ensure capacity.

Fixes

Cassandra

e Added probabilistic and async trimming on delivery

 Dropped gc_grace _peri od and increased repair
frequency In favor of small but frequent ones.

Service
* Bulkheads: all logical service operations are time-bound
and have individual threadpools to ensure capacity.

Application: rolled out circuit breakers

IS 1t fixed now?

We still have some pending tasks we are working on:

e ensuring repairs are successful

e ensuring a single bad node (not dead but very slow)
doesn’t take down the cluster

IS 1t fixed now?

We still have some pending tasks we are working on:

e ensuring repairs are successful
e ensuring a single bad node (not dead but very slow)

doesn’t take down the cluster

But importantly, with the current setup a problem in

Cassandra:
e doesn’t take the site down
e only users whose data Is on problematic nodes are

affected

What worked well

We were able to iterate and fix problems very quickly:

 Integration tests allowed us to ship to prod with
confidence

e shadow deploy gave us great feedback on design

e existing metrics/analytics aided our design choices

* having an easy to run migration allowed us to quickly
iterate on the data model

What we've learned

Even for a big organization introducing a technology bears
a high cost:
e Getting a working model in prod took only 3 months

 Ironing out operations will take at least 1 year
— Understanding the system
— Firefighting and fixing
— Training

What we've learned

Even for a big organization introducing a technology bears
a high cost:
e Getting a working model in prod took only 3 months

 Ironing out operations will take at least 1 year
— Understanding the system
— Firefighting and fixing
— Training

Support helps, but the above still holds.

Thank you — this time for real

Any guestions?

