
Cassandra at Yammer
Michał Rutkowski (mrutkowski@yammer-inc.com)

Plan
•  About Yammer
•  What we wanted to change and why
•  How we rolled out Cassandra
•  What we’ve learned and what worked well

Plan
•  About Yammer
•  What we wanted to change and why
•  How we rolled out Cassandra
•  What we’ve learned and what worked well

Plan
•  About Yammer
•  What we wanted to change and why
•  How we rolled out Cassandra
•  What we’ve learned and what worked well

Plan
•  About Yammer
•  What we wanted to change and why
•  How we rolled out Cassandra
•  What we’ve learned and what worked well

About Yammer
An Enterprise Social Network whose aim is to facilitate
better and faster communication within an organization.

Yammer’s Architecture

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Yammer’s Operational Tooling
This obviously quite complex, so we have some tooling:
•  CI – Team City and Jenkins
•  Deployment – homegrown DW service
•  Analytics – homegrown service for querying across

multiple DBs
•  Metrics – DW metrics, Kafka based collection pipeline

and Wavefront for visualization
•  Log aggregation (Logstash + Kibana)

Deployment

Deployment

Metrics

What we wanted change and why
•  Extract Inbox feature from an existing service, that

powered all messaging feeds
•  To enable faster iteration on Inbox
•  Find an alternative to a legacy DB that:

– expensive to scale,
– had a bad support story
– wasn’t great for a cross-DC setup

What we wanted change and why
•  Extract Inbox feature from an existing service, that

powered all messaging feeds
•  To enable faster iteration on Inbox
•  Find an alternative to a legacy DB that:

– expensive to scale,
– had a bad support story
– wasn’t great for a cross-DC setup

What we wanted change and why
•  Extract Inbox feature from an existing service, that

powered all messaging feeds
•  To enable faster iteration on Inbox
•  Find an alternative to a legacy DB that:

– expensive to scale,
– had a bad support story
– wasn’t great for a cross-DC setup

Overview

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Write Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Read Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Read Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Read Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Read Path

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Goal
So what part of the system did we want to change and
how?

Goal

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Goal

Distribution
List

Rabbit MQ Worker

BDB

Dropwizard
Java
Service

R
ai

ls
 A

pp

SQL DB

Goal

Distribution
List

Worker

BDB

Dropwizard
Java
Service

Goal

Distribution
List

Worker

BDB

Dropwizard
Java
Service

Goal

Distribution
List

Worker

BDB

Dropwizard
Java
Service

Dropwizard
Java
Service

WorkerRabbit MQ

Goal

Distribution
List

Worker

BDB

Dropwizard
Java
Service

Dropwizard
Java
Service

WorkerRabbit MQ

Goal

Dropwizard
Java Service

Goal

Dropwizard
Java Service

Methodology
•  Capture the API and semantics in integration tests
•  Use production traffic to capacity plan and load test

– shadow deploy and double dispatch
– migrate data early
–  run verification tasks

•  Assume we are going to make mistakes, so make data
migration cheap:
– bad modeling
– missed use cases

Methodology
•  Capture the API and semantics in integration tests
•  Use production traffic to capacity plan and load test

– shadow deploy and double dispatch
– migrate data early
–  run verification tasks

•  Assume we are going to make mistakes, so make data
migration cheap:
– bad modeling
– missed use cases

Methodology
•  Capture the API and semantics in integration tests
•  Use production traffic to capacity plan and load test

– shadow deploy and double dispatch
– migrate data early
–  run verification tasks

•  Assume we are going to make mistakes, so make data
migration cheap:
– bad modeling
– missed use cases

What we knew
•  Inbox is read heavy: 500mln requests/day
•  We fan-out on write:

–  50mln individual user deliveries/day
–  “announcements spikes” of up to 300K deliveries from one msg

•  We needed tech that will be good for reads, but could
also provide RT delivery in face of massive fan-outs.

What we knew
•  Inbox is read heavy: 500mln requests/day
•  We fan-out on write:

–  50mln individual user deliveries/day
–  “announcements spikes” of up to 300K deliveries from one msg

•  We needed tech that will be good for reads, but could
also provide RT delivery in face of massive fan-outs.

What we knew
•  Inbox is read heavy: 500mln requests/day
•  We fan-out on write:

–  50mln individual user deliveries/day
–  “announcements spikes” of up to 300K deliveries from one msg

•  We needed tech that will be good for reads, but could
also provide RT delivery in face of massive fan-outs.

First Phase – Choose the DB
We considered Riak and Cassandra as both:
•  are sharded and replicated,
•  work well cross-DC, and
•  have a support story

We chose Cassandra over Riak because it did not force us
to do a Read-Modify-Write of the whole inbox on message
delivery.

First Phase – Choose the DB
We considered Riak and Cassandra as both:
•  are sharded and replicated,
•  work well cross-DC, and
•  have a support story

We chose Cassandra over Riak because it did not force us
to do a Read-Modify-Write of the whole inbox on message
delivery.

Second Phase
Get something working!

•  Provision Hardware
•  Decide on a RESTful service API
•  Get a build that tests the API and hits Cassandra
•  Start implementing against our data model

Inbox - how it works?
•  Stores threads addressed/watched by the user
•  Threads ordered by most recently replied to
•  Thread contents isn’t actually stored in this service
•  On message post:

– we deliver the message to every inbox
–  this amounts to updating last_message_id

•  On read:
– paginate (most recent messages first)
– filter (read/unread)

Inbox - how it works?
•  Stores threads addressed/watched by the user
•  Threads ordered by most recently replied to
•  Thread contents isn’t actually stored in this service
•  On message post:

– we deliver the message to every inbox
–  this amounts to updating last_message_id

•  On read:
– paginate (most recent messages first)
– filter (read/unread)

Inbox - how it works?
•  Stores threads addressed/watched by the user
•  Threads ordered by most recently replied to
•  Thread contents isn’t actually stored in this service
•  On message post:

– we deliver the message to every inbox
–  this amounts to updating last_message_id

•  On read:
– paginate (most recent messages first)
– filter (read/unread)

Inbox - how it works?
•  Stores threads addressed/watched by the user
•  Threads ordered by most recently replied to
•  Thread contents isn’t actually stored in this service
•  On message post:

– we deliver the message to every inbox
–  this amounts to updating last_message_id

•  On read:
– paginate (most recent messages first)
– filter (read/unread)

Inbox - how it works?
•  Stores threads addressed/watched by the user
•  Threads ordered by most recently replied to
•  Thread contents isn’t actually stored in this service
•  On message post:

– we deliver the message to every inbox
–  this amounts to updating last_message_id

•  On read:
– paginate (most recent messages first)
– filter (read/unread)

First Design
Inbox Table:
•  Partitioned by: inbox_id
•  Primary keyed: (inbox_id, last_message_id)
•  Secondary indices for filtering, e.g. (is_read)

Thread Table:
•  Secondary Index partitioned by: thread_id
•  Used for storing thread metadata needed for delivery
•  Heavily used CRDT sets

First Design
Inbox Table:
•  Partitioned by: inbox_id
•  Primary keyed: (inbox_id, last_message_id)
•  Secondary indices for filtering, e.g. (is_read)

Thread Table:
•  Secondary Index partitioned by: thread_id
•  Used for storing thread metadata needed for delivery
•  Heavily used CRDT sets

First Design
It was great:
•  All our tests were passing and we covered for all the

edge cases
•  It fitted well with our usage patterns
•  It was self healing in the presence of out-of-order

deliveries or system partitions

Except that…. it brought our migration task to a halt.

First Design
It was great:
•  All our tests were passing and we covered for all the

edge cases
•  It fitted well with our usage patterns
•  It was self healing in the presence of out-of-order

deliveries or system partitions

Except that…. it brought our migration task to a halt.

First Design
It was great:
•  All our tests were passing and we covered for all the

edge cases
•  It fitted well with our usage patterns
•  It was self healing in the presence of out-of-order

deliveries or system partitions

Except that…. it brought our migration task to a halt.

First Design – What went wrong
We discovered that:
•  Secondary indices are slow as hell!
•  CRDTs are OKish for small infrequently updated things,

but not for our subscription lists.

Secondly:
•  The cost of our conveniently sorted data was heavy

reliance on deletes – a NO NO in Cassandra world.

First Design – What went wrong
We discovered that:
•  Secondary indices are slow as hell!
•  CRDTs are OKish for small infrequently updated things,

but not for our subscription lists.

Secondly:
•  The cost of our conveniently sorted data was heavy

reliance on deletes – a NO NO in Cassandra world.

What to do now?
We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our API and
that the semantics were captured in integration tests.

We could use the tests and the metrics we had to quickly
iterate on the implementation.

What to do now?
We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our API and
that the semantics were captured in integration tests.

We could use the tests and the metrics we had to quickly
iterate on the implementation.

What to do now?
We expected that kind of thing - we were only just learning
to use Cassandra and wanted to use prod traffic to
benchmark our solutions.

What was important is that this did not affect our API and
that the semantics were captured in integration tests.

We could use the tests and the metrics we had to quickly
iterate on the implementation.

Second Design
•  Forget all the Cassandra Extras and design around it’s

strengths.
•  Understand feature requirements better and leverage that

in your model (analytics):
– we do not need to hold all the data, just recent stuff (Search)
– 5000 entries is only 75KB, and that covers 4 years for an active

user.
– We don’t need to be that exact

Second Design
•  Forget all the Cassandra Extras and design around it’s

strengths.
•  Understand feature requirements better and leverage that

in your model (analytics):
– we do not need to hold all the data, just recent stuff (Search)
– 5000 entries is only 75KB, and that covers 4 years for an active

user.
– We don’t need to be that exact

Second Design
Inbox Table:
•  Partitioned by: inbox_id
•  Primary keyed: (inbox_id, thread_id)
•  Mutable metadata: (is_read, last_message_id)

Thread Table:
•  Secondary Index partitioned by: thread_id
•  Used for storing thread metadata needed for delivery

Second Design
Inbox Table:
•  Partitioned by: inbox_id
•  Primary keyed: (inbox_id, thread_id)
•  Mutable metadata: (is_read, last_message_id)

Thread Table:
•  Secondary Index partitioned by: thread_id
•  Used for storing thread metadata needed for delivery

Second Design
•  This will be mutation heavy: use Leveled Compaction
•  There will be races on updates:

– on active threads it doesn’t matter – we just order and filter
– on less active ones, races are negligible and users can correct

•  On read:
–  read the whole inbox, sort and then filter
– data is small, so it will be actually OK
–  trim excess data (delete)

Second Design
•  This will be mutation heavy: use Leveled Compaction
•  There will be races on updates:

– on active threads it doesn’t matter – we just order and filter
– on less active ones, races are negligible and users can correct

•  On read:
–  read the whole inbox, sort and then filter
– data is small, so it will be actually OK
–  trim excess data (delete)

Second Design
•  This will be mutation heavy: use Leveled Compaction
•  There will be races on updates:

– on active threads it doesn’t matter – we just order and filter
– on less active ones, races are negligible and users can correct

•  On read:
–  read the whole inbox, sort and then filter
– data is small, so it will be actually OK
–  trim excess data (delete)

Second Design
This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

However… read performance was very varied, and below
our expectations.

Second Design
This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

However… read performance was very varied, and below
our expectations.

Second Design
This time we got to production and passed the migration
step.

It was even working in the shadow mode, modulo some
data inconsistencies from missed use cases.

However… read performance was very varied, and below
our expectations.

What now?
Look at usage metrics in more detail.

Out of the 500mln queries we see a day more than 450mln
are for an unread count.

Actually, this happens to be a very small value:
•  P95: < 100
•  P999 < 1000

Materialize this query in a separate table (just unread stuff)

What now?
Look at usage metrics in more detail.

Out of the 500mln queries we see a day more than 450mln
are for an unread count.

Actually, this happens to be a very small value:
•  P95: < 100
•  P999 < 1000

Materialize this query in a separate table (just unread stuff)

What now?
Look at usage metrics in more detail.

Out of the 500mln queries we see a day more than 450mln
are for an unread count.

Actually, this happens to be a very small value:
•  P95: < 100
•  P999 < 1000

Materialize this query in a separate table (just unread stuff)

What now?
Look at usage metrics in more detail.

Out of the 500mln queries we see a day more than 450mln
are for an unread count.

Actually, this happens to be a very small value:
•  P95: < 100
•  P999 < 1000

Materialize this query in a separate table (just unread stuff)

Where did this get us?
Write latency of:
•  < 100ms for regular messages
•  < 10s for the massive spikey announcements

Read Latency of:
•  P99 < 250ms, P999 < 500ms – for the whole inbox
•  P999 < 30ms – for unread count

Where did this get us?
Write latency of:
•  < 100ms for regular messages
•  < 10s for the massive spikey announcements

Read Latency of:
•  P99 < 250ms, P999 < 500ms – for the whole inbox
•  P999 < 30ms – for unread count

We shipped! – Thank You
Any Questions?

Not so fast!
Free months later, on the first day of my summer holiday!

Yammer is down!
•  The site is down
•  Our service is on fire!
•  3 Cassandra nodes are on fire

Not so fast!
Free months later, on the first day of my summer holiday!

Yammer is down!
•  The site is down
•  Our service is on fire!
•  3 Cassandra nodes are on fire

What went wrong?
Turns out having an HA service and an HA DB doesn’t
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

Leveled compaction didn’t like it!

What went wrong?
Turns out having an HA service and an HA DB doesn’t
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

Leveled compaction didn’t like it!

What went wrong?
Turns out having an HA service and an HA DB doesn’t
make your site HA!

At the root of it was a massive inbox that was receiving
tons of updates but was never read. This meant never
trimmed.

Leveled compaction didn’t like it!

But there were deeper problems
•  Our trimming strategy didn’t account for overgrowing

inboxes` impact on compaction.
•  Our main app didn’t have circuit breakers and timeouts
•  The service itself didn’t control it’s resources (timeouts/

threads) to ensure HA.

But there were deeper problems
•  Our trimming strategy didn’t account for overgrowing

inboxes` impact on compaction.
•  Our main app didn’t have circuit breakers and timeouts
•  The service itself didn’t control it’s resources (timeouts/

threads) to ensure HA.

But there were deeper problems
•  Our trimming strategy didn’t account for overgrowing

inboxes` impact on compaction.
•  Our main app didn’t have circuit breakers and timeouts
•  The service itself didn’t control it’s resources (timeouts/

threads) to ensure HA.

Fixes
Cassandra
•  Added probabilistic and async trimming on delivery
•  Dropped gc_grace_period and increased repair

frequency in favor of small but frequent ones.

Service
•  Bulkheads: all logical service operations are time-bound

and have individual threadpools to ensure capacity.

Application: rolled out circuit breakers

Fixes
Cassandra
•  Added probabilistic and async trimming on delivery
•  Dropped gc_grace_period and increased repair

frequency in favor of small but frequent ones.

Service
•  Bulkheads: all logical service operations are time-bound

and have individual threadpools to ensure capacity.

Application: rolled out circuit breakers

Fixes
Cassandra
•  Added probabilistic and async trimming on delivery
•  Dropped gc_grace_period and increased repair

frequency in favor of small but frequent ones.

Service
•  Bulkheads: all logical service operations are time-bound

and have individual threadpools to ensure capacity.

Application: rolled out circuit breakers

Is it fixed now?
We still have some pending tasks we are working on:
•  ensuring repairs are successful
•  ensuring a single bad node (not dead but very slow)

doesn’t take down the cluster

But importantly, with the current setup a problem in
Cassandra:
•  doesn’t take the site down
•  only users whose data is on problematic nodes are

affected

Is it fixed now?
We still have some pending tasks we are working on:
•  ensuring repairs are successful
•  ensuring a single bad node (not dead but very slow)

doesn’t take down the cluster

But importantly, with the current setup a problem in
Cassandra:
•  doesn’t take the site down
•  only users whose data is on problematic nodes are

affected

What worked well
We were able to iterate and fix problems very quickly:
•  integration tests allowed us to ship to prod with

confidence
•  shadow deploy gave us great feedback on design
•  existing metrics/analytics aided our design choices
•  having an easy to run migration allowed us to quickly

iterate on the data model

What we’ve learned
Even for a big organization introducing a technology bears
a high cost:
•  Getting a working model in prod took only 3 months
•  Ironing out operations will take at least 1 year

– Understanding the system
– Firefighting and fixing
– Training

Support helps, but the above still holds.

What we’ve learned
Even for a big organization introducing a technology bears
a high cost:
•  Getting a working model in prod took only 3 months
•  Ironing out operations will take at least 1 year

– Understanding the system
– Firefighting and fixing
– Training

Support helps, but the above still holds.

Thank you – this time for real
Any questions?

