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Episode IV: A New Hope

1936: Turing machine: Online processing



The first computers

1956

IBM 350 RAMAC

Capacity: 3.75 MB



Artificial intelligence: almost done!
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1943 – 1960’s: Multiple layers neural networks
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• Not enough computing power

• Not enough storage capacity

• Not enough data

• Algorithms are not efficient enough 

Episode V: Reality Strikes Back



Episode VI: Return of the Regression

Learn a weight vector 𝑤 ∈ 𝑅𝑀 such that :

𝑦𝑤 𝑥 = 

𝑖

𝑤𝑖𝑥𝑖 ∼ 𝑦

N samples with m features: 𝑥p ∈ 𝑅𝑀
Result to predict: 𝑦𝑝 ∈ 𝑅

N samples with m features: 𝑥p ∈ 𝑅𝑀

Class to predict: 𝑦𝑝 = 0,1/ blue,red

Learn a weight vector 𝑤 ∈ 𝑅𝑀 such that :

𝑦𝑤 𝑥 =
1

1+exp(−  𝑖𝑤𝑖𝑥𝑖)
is close to 𝑦



L𝐨𝐬𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 Model: 𝑓𝑤(𝑥) Meaning of 𝑦𝑤(𝑥)

Linear regression 1

2
𝑦𝑤 − 𝑦

2  

𝑖

𝑤𝑖𝑥𝑖
Conditional 
expectation

𝐸(𝑦|𝑥)

Logistic regression log(𝑦𝑤) 1

1 + exp(− 𝑖𝑤𝑖𝑥𝑖)

Probability
𝑃(𝑦|𝑥)

Hinge regression max(0,1 − 𝑦𝑦𝑤) sign 𝑥 Approximation
-1 or 1

Loss functions

Accounts for your model error

Choose a loss function according to your usecase



Many iterations

Each on the entire dataset

Batch learning algorithm

N samples
(𝑥𝑝, 𝑦𝑝)

Minimize the global loss to find the 

best parameters

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑁
 

𝑝

𝛻𝑤𝐿(𝑦
𝑝, 𝑓𝑤 𝑥

𝑝 )

Predictive model with 

parameters 𝑤

Prediction on (𝑥, 𝑦)
𝑦𝑤(𝑥) = 𝑓𝑤(𝑥)

Compute the loss 

Accumulate for all samples 

→ global loss

𝐸𝑤 =
1

𝑁
 

𝑝

𝐿(𝑦𝑝, 𝑓𝑤 𝑥
𝑝 )

Complexity: 

𝜗 𝑁 for each iteration



Many iterations

Each on the entire dataset

Direction is orthogonal to the isocontours

Global loss function in weights space

Lines = isocontours

Batch learning algorithm

Minimize the global loss to find the 

best parameters

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑁
 

𝑝

𝛻𝑤𝐿(𝑦
𝑝, 𝑓𝑤 𝑥

𝑝 )

Complexity: 

𝜗 𝑁 for each iteration

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf



Episode I: The Big Data Menace

What if

• data does not fit in memory?
• we want to combine features together (polynomials, n-grams)?
→ dataset size inflation
• new samples come with new features?
• the phenomenon we try to model drift with time?



Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥 )

Predictive model with 

parameters 𝑤

Prediction on (𝑥, 𝑦)
𝑦𝑤(𝑥) = 𝑓𝑤(𝑥)

Compute the individual loss 

Complexity: 

𝜗 1 for each iteration

N samples
(𝑥𝑝, 𝑦𝑝)

Many iterations 

One sample at a time



Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥 )

Complexity: 

𝜗 1 for each iteration

Many iterations 

One sample at a time

Direction is not perpendicular, 

but is updated much more often

Having more updates allows to stabilize 

and approach the minimum very quickly



Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥 )

Complexity: 

𝜗 1 for each iteration

Many iterations 

One sample at a time

Direction is not perpendicular, 

but is updated much more often

Having more updates allows to stabilize 

and approach the minimum very quickly

Problem: a lot of noise



The time required for convergence

16

Optimization accuracy against training time for online (SGD) and batch (TRON)

Online learning 

requires a lot 

less time to 

approximately 

converge

Once close to the 

minimum, batch is 

much faster because 

it is noiseless 

Bottou, Stochastic gradient descent tricks, Neural Networks: Tricks of the Trade (2012).

WARNING

Once batch becomes better, 

the validation error has 

already converged anyway.



An implementation of online learning: Vowpal Wabbit

• Originally developed at Yahoo!, currently at Microsoft

• Led by John Langford

• C++

• efficient scalable implementation of online learning

• First public version 2007

• 2015: 4400 commits, 81 contributors, 18 releases



Vowpal Wabbit

Nice features of VW

• MANY algorithms are implemented 

• Optimization algorithms (BFGS, Conjugate gradient, etc.)

• Combinations of features, N-grams (NLP)

• Automatic tuning (learning rate, adaptive learning, on the fly normalization features)

• And more (boostraping, multi-core CPUs, etc.)



Vowpal Wabbit

Input agnostic

• Binary

• Numerical

• Categorical (hashing trick)

• Can deal with missing values/sparse-features

Very little data preparation

1 1.0 |height:1.5 length:2.0 |has stripes
1 1.0 |length:3.0 |has four legs
-1 1.0 |height:0.3 |has wings
-1 1.0 |height: 0.9 length: 0.6 |has a shell and a nice color



Vowpal Wabbit

• Fast learning for scoring on large datasets

• Can handle quite raw (unprepared data)

• Great for exploring a new dataset with simple and fast models 

• Uncover phenomena

• Figure out what your should do for feature engineering

Yes but …



Episode II: Attack of the Clones

Why parallelizing?

• Speed-up

• Data does not fit on a single machine

(Subsampling is not always good if you have many features)

• Take advantage of distributed storage and avoid the bottleneck of data transfer

• Take advantage of distributed memory to explore 

combination (multiplication to billions 

of distinct features)



The solution: online + batch learning

1. Each node 𝑘 makes an online pass over its data (adaptive gradient update rule)

2. Average the weights

 𝑤 = ( 

𝑘=1

𝐾

𝐺𝑘)

−1

( 

𝑘=1

𝐾

𝐺𝑘𝑤𝑘)

3.  𝑤 is broadcasted down to all nodes and continue learning.

4. Iterate then with batch learning to make the last few steps to the minimum.

How is it implemented in Vowpal Wabbit project?



Needs MPI (Message Passing Interface) MapReduce

Effective communication 

infrastructure

Y Allreduce is simple

N Data transfers across network

N Large overhead (job scheduling, some 

data transfer, data parsing)

Data-centric platform 

(avoid data transfer)

N Lack of internal knowledge of data 

location

Y Full knowledge of data location

Fault tolerant system N Little fault tolerant by default Y Robust and fault tolerant

Easy to code / good 

programming language

Y Standard and portable (Fortran, 

C/C++, Java)

Y Automatic cleanup of temp files by 

default

N Rethink and rewrite learning code into 

map and reduce operations

N Java eats up a lot of RAM

Good optimization 

approach 

Y No need to rewrite learning code N Map/reduce operations does not easily 

allow iterative algorithms

Overall time must be 

minimal

N Data transfers across network N Increased number of read/write 

operations

N Increased time while waiting for free 

nodes

Implementation by VW: AllReduce + MapReduce



All Reduce

1

2

9 5

8

8 1

Allreduce is based on a communication structure in trees

(binary is easier to implement)

Every node starts with a number 

1. Reduce = sum up the tree

2. Broadcast down up the tree

Every node ends up with the sum of the 

numbers across all the nodes
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(binary is easier to implement)
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All Reduce

Every node starts with a number 

1. Reduce = sum up the tree

2. Broadcast down up the tree

Every node ends up with the sum of the 

numbers across all the nodes

34

34

34 34

34

34 34

Allreduce is based on a communication structure in trees

(binary is easier to implement)



MapReduce (streaming)/AllReduce-online/batch

1. Start the daemon 

(communication system)

2. Each node makes an 

online pass over its data 

4. Use allreduce to average 

the weights over all nodes

3. Initialize a tree on the 

masternode

5. Broadcast the averaged 

weights down to all nodes

6. Use it to initialize a 

batch learning step

7. Send back the weights

and average with allreduce

8. Iterate other batch steps



Advantages of VW implementation

• Minimal additional programming effort

• Data location knowledge: use mapreduce infrastructure with only one mapper

• Vowpal wabbit (C/C++) is not RAM greedy

• Small synchronisation overhead 

• time spent in AllReduce operation ≪ computation time

• Reduced stalling time while waiting for other nodes

• delayed initialization of AllReduce’s tree to capitalize on Hadoop speculative execution

• Rapid convergence with online then accuracy with batch



Episode III: Revenge of Hadoop

1. Start the daemon (./spanning_tree.cc)

2. Launch the MapReduce job

3. Kill the spanning tree

hadoop jar /home/hadoop/contrib/streaming/hadoop-streaming.jar \
-D mapreduce.map.speculative=true \
-D mapreduce.job.reduces=0 \
-input $in_directory \
-output $out_directory \
-files [“/usr/local/bin/vw, 

/usr/lib64/libboost_program_options.so, /lib64/libz.so.1”]
-file runvw.sh \
-mapper runvw.sh \
-reducer NONE 



Running vowpal wabbit on AWS

AWS Best practice: Transient clusters

• Get your data on S3 buckets

• Start an EMR (Elastic Map Reduce) cluster

• Bootstrap actions (install, config, etc.)

• Run your job(s) (steps)

• Shut down your cluster
Pros and cons

• Easy setup / works well

• Minimum maintenance

• Low cost

• Logs ???????

• Debugging can be is difficult 

→ use an experimental cluster or a VM



Beware of the environment variables

VW needs MapReduce environment variables

• total number of mapper tasks

• number ID of the map task for each node

• ID of the MapReduce job

• private dns of the master node within the cluster

Update the names in VW-cluster code

Hack the environment variables with python

vw --total $nmappers --node $mapper \
--unique_id $mapred_job_id -d /dev/stdin \
--span_server $submit_host \
--loss_function=logistic -f sgd.vwmodel



Number of splits

You need to brute force the number of splits to the map reduce job

• Advice from John Langford / approach in the code

• compute the size of your minimal data size (total / nb of nodes)

• use option –D mapreduce.min.split.size
→ didn’t work

• Dirty workaround

• split the data into as many file as your nodes

• store it in a .gz file



Running vowpal wabbit on AWS

ip-10-38-138-36.eu-west-1.compute.internal
Starting training
SGD ...
creating quadratic features for pairs: ft tt ff fi ti
final_regressor = sgd.vwmodel
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5

average  since         example        example current  current current
loss     last          counter         weight    label  predict features
0.693147 0.693147            2            1.0  -1.0000   0.0000      325
0.400206 0.107265            3            2.0  -1.0000  -2.1783      325
[...]
0.414361 0.404726       131073       131072.0  -1.0000  -4.5625      325
0.406345 0.398329       262145       262144.0   1.0000  -1.8379      325
0.388375 0.370405       524289       524288.0  -1.0000  -1.3313      325



Running vowpal wabbit on AWS

0.388375 0.370405       524289       524288.0  -1.0000  -1.3313      325
connecting to 10.38.138.36 = ip-10-38-138-36.eu-west-1.compute.internal:26543
wrote unique_id=2
wrote total=1
wrote node=0
read ok=1
read kid_count=0
read parent_ip=255.255.255.255
read parent_port=65535
Net time taken by process = 8.767000 seconds
finished run
number of examples per pass = 1000001
passes used = 1
weighted example sum = 1000000.000000
weighted label sum = -679560.000000
average loss = 0.380041
total feature number = 325000000



Running vowpal wabbit on AWS

BFGS ...
[...]
num sources = 1
connecting to 10.38.138.36 = ip-10-38-138-36.eu-west-1.compute.internal:26543
wrote unique_id=4
wrote total=1
wrote node=0
[...]
read parent_ip=255.255.255.255
read parent_port=65535
Maximum number of passes reached. 
Net time taken by process = 10.55 seconds
finished run
number of examples = 1800002
weighted example sum = 1.8e+06
weighted label sum = -1.22307e+06
average loss = 0.350998 h
total feature number = 585000000



Running vowpal wabbit on AWS

On Hadoop with 5 nodes

6 minutes

On a single machine

26 minutes and 30 seconds

6.4 GB

50 000 000 samples

52 974 510 080 features 



Concluding remarks

Less computational time allows to explore more data
• Work on more data

• Include more features to the analysis

• Useful as a platform for research and experimentation

Optimization algorithms

• Lots of interesting papers (Langford, Bottou, Agarwal, LeCun, Duchi, Zinkevich, …)

VW on Hadoop

Learn a lot by doing and debugging :-)

If possible, use online learning when time of computation is the bottleneck



Episode VII: The Force Awakens

Coming soon
• Pushes on github

Benchmarks
• How is the training time affected by the size of the data set (measure overhead)

• Benchmark available approaches on various large datasets and usecases

• Benchmark against Graphlab, MLlib

More VW
• Exhaustive comparison and association with complex models (exploit vw for feature 

engineering and feature selection)

• Nonlinear online learning (neural networks, SVM, ...)



A few references
• John Langford – Hunchnet – github
• Bottou, Stochastic gradient descent tricks, Neural 

Networks: Tricks of the Trade (2012)
• Yann LeCun’s lectures
• http://quantmetry-blog.com

@HeloiseNonne

Master node

Worker

Worker

Worker


