
Online learning, Vowpal Wabbit and Hadoop
Héloïse Nonne

Data Science Consulting

hnonne@quantmetry.com
June 2nd, 2015

Quantmetry

2

Episode IV: A New Hope

1936: Turing machine: Online processing

The first computers

1956

IBM 350 RAMAC

Capacity: 3.75 MB

Artificial intelligence: almost done!

6

1943 – 1960’s: Multiple layers neural networks

7

• Not enough computing power

• Not enough storage capacity

• Not enough data

• Algorithms are not efficient enough

Episode V: Reality Strikes Back

Episode VI: Return of the Regression

Learn a weight vector 𝑤 ∈ 𝑅𝑀 such that :

𝑦𝑤 𝑥 =

𝑖

𝑤𝑖𝑥𝑖 ∼ 𝑦

N samples with m features: 𝑥p ∈ 𝑅𝑀
Result to predict: 𝑦𝑝 ∈ 𝑅

N samples with m features: 𝑥p ∈ 𝑅𝑀

Class to predict: 𝑦𝑝 = 0,1/ blue,red

Learn a weight vector 𝑤 ∈ 𝑅𝑀 such that :

𝑦𝑤 𝑥 =
1

1+exp(− 𝑖𝑤𝑖𝑥𝑖)
is close to 𝑦

L𝐨𝐬𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 Model: 𝑓𝑤(𝑥) Meaning of 𝑦𝑤(𝑥)

Linear regression 1

2
𝑦𝑤 − 𝑦

2

𝑖

𝑤𝑖𝑥𝑖
Conditional
expectation

𝐸(𝑦|𝑥)

Logistic regression log(𝑦𝑤) 1

1 + exp(− 𝑖𝑤𝑖𝑥𝑖)

Probability
𝑃(𝑦|𝑥)

Hinge regression max(0,1 − 𝑦𝑦𝑤) sign 𝑥 Approximation
-1 or 1

Loss functions

Accounts for your model error

Choose a loss function according to your usecase

Many iterations

Each on the entire dataset

Batch learning algorithm

N samples
(𝑥𝑝, 𝑦𝑝)

Minimize the global loss to find the

best parameters

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑁

𝑝

𝛻𝑤𝐿(𝑦
𝑝, 𝑓𝑤 𝑥

𝑝)

Predictive model with

parameters 𝑤

Prediction on (𝑥, 𝑦)
𝑦𝑤(𝑥) = 𝑓𝑤(𝑥)

Compute the loss

Accumulate for all samples

→ global loss

𝐸𝑤 =
1

𝑁

𝑝

𝐿(𝑦𝑝, 𝑓𝑤 𝑥
𝑝)

Complexity:

𝜗 𝑁 for each iteration

Many iterations

Each on the entire dataset

Direction is orthogonal to the isocontours

Global loss function in weights space

Lines = isocontours

Batch learning algorithm

Minimize the global loss to find the

best parameters

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑁

𝑝

𝛻𝑤𝐿(𝑦
𝑝, 𝑓𝑤 𝑥

𝑝)

Complexity:

𝜗 𝑁 for each iteration

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Episode I: The Big Data Menace

What if

• data does not fit in memory?
• we want to combine features together (polynomials, n-grams)?
→ dataset size inflation
• new samples come with new features?
• the phenomenon we try to model drift with time?

Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥)

Predictive model with

parameters 𝑤

Prediction on (𝑥, 𝑦)
𝑦𝑤(𝑥) = 𝑓𝑤(𝑥)

Compute the individual loss

Complexity:

𝜗 1 for each iteration

N samples
(𝑥𝑝, 𝑦𝑝)

Many iterations

One sample at a time

Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥)

Complexity:

𝜗 1 for each iteration

Many iterations

One sample at a time

Direction is not perpendicular,

but is updated much more often

Having more updates allows to stabilize

and approach the minimum very quickly

Online learning algorithm

Update the parameters to minimize

individual loss

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑦, 𝑓𝑤 𝑥)

Complexity:

𝜗 1 for each iteration

Many iterations

One sample at a time

Direction is not perpendicular,

but is updated much more often

Having more updates allows to stabilize

and approach the minimum very quickly

Problem: a lot of noise

The time required for convergence

16

Optimization accuracy against training time for online (SGD) and batch (TRON)

Online learning

requires a lot

less time to

approximately

converge

Once close to the

minimum, batch is

much faster because

it is noiseless

Bottou, Stochastic gradient descent tricks, Neural Networks: Tricks of the Trade (2012).

WARNING

Once batch becomes better,

the validation error has

already converged anyway.

An implementation of online learning: Vowpal Wabbit

• Originally developed at Yahoo!, currently at Microsoft

• Led by John Langford

• C++

• efficient scalable implementation of online learning

• First public version 2007

• 2015: 4400 commits, 81 contributors, 18 releases

Vowpal Wabbit

Nice features of VW

• MANY algorithms are implemented

• Optimization algorithms (BFGS, Conjugate gradient, etc.)

• Combinations of features, N-grams (NLP)

• Automatic tuning (learning rate, adaptive learning, on the fly normalization features)

• And more (boostraping, multi-core CPUs, etc.)

Vowpal Wabbit

Input agnostic

• Binary

• Numerical

• Categorical (hashing trick)

• Can deal with missing values/sparse-features

Very little data preparation

1 1.0 |height:1.5 length:2.0 |has stripes
1 1.0 |length:3.0 |has four legs
-1 1.0 |height:0.3 |has wings
-1 1.0 |height: 0.9 length: 0.6 |has a shell and a nice color

Vowpal Wabbit

• Fast learning for scoring on large datasets

• Can handle quite raw (unprepared data)

• Great for exploring a new dataset with simple and fast models

• Uncover phenomena

• Figure out what your should do for feature engineering

Yes but …

Episode II: Attack of the Clones

Why parallelizing?

• Speed-up

• Data does not fit on a single machine

(Subsampling is not always good if you have many features)

• Take advantage of distributed storage and avoid the bottleneck of data transfer

• Take advantage of distributed memory to explore

combination (multiplication to billions

of distinct features)

The solution: online + batch learning

1. Each node 𝑘 makes an online pass over its data (adaptive gradient update rule)

2. Average the weights

 𝑤 = (

𝑘=1

𝐾

𝐺𝑘)

−1

(

𝑘=1

𝐾

𝐺𝑘𝑤𝑘)

3. 𝑤 is broadcasted down to all nodes and continue learning.

4. Iterate then with batch learning to make the last few steps to the minimum.

How is it implemented in Vowpal Wabbit project?

Needs MPI (Message Passing Interface) MapReduce

Effective communication

infrastructure

Y Allreduce is simple

N Data transfers across network

N Large overhead (job scheduling, some

data transfer, data parsing)

Data-centric platform

(avoid data transfer)

N Lack of internal knowledge of data

location

Y Full knowledge of data location

Fault tolerant system N Little fault tolerant by default Y Robust and fault tolerant

Easy to code / good

programming language

Y Standard and portable (Fortran,

C/C++, Java)

Y Automatic cleanup of temp files by

default

N Rethink and rewrite learning code into

map and reduce operations

N Java eats up a lot of RAM

Good optimization

approach

Y No need to rewrite learning code N Map/reduce operations does not easily

allow iterative algorithms

Overall time must be

minimal

N Data transfers across network N Increased number of read/write

operations

N Increased time while waiting for free

nodes

Implementation by VW: AllReduce + MapReduce

All Reduce

1

2

9 5

8

8 1

Allreduce is based on a communication structure in trees

(binary is easier to implement)

Every node starts with a number

1. Reduce = sum up the tree

2. Broadcast down up the tree

Every node ends up with the sum of the

numbers across all the nodes

All Reduce

Every node starts with a number

1. Reduce = sum up the tree

2. Broadcast down up the tree

Every node ends up with the sum of the

numbers across all the nodes

1

16

9 5

17

8 1

Allreduce is based on a communication structure in trees

(binary is easier to implement)

All Reduce

Every node starts with a number

1. Reduce = sum up the tree

2. Broadcast down the tree

Every node ends up with the sum of the

numbers across all the nodes

34

16

9 5

17

8 1

Allreduce is based on a communication structure in trees

(binary is easier to implement)

All Reduce

Every node starts with a number

1. Reduce = sum up the tree

2. Broadcast down the tree

Every node ends up with the sum of the

numbers across all the nodes

34

34

9 5

34

8 1

Allreduce is based on a communication structure in trees

(binary is easier to implement)

All Reduce

Every node starts with a number

1. Reduce = sum up the tree

2. Broadcast down up the tree

Every node ends up with the sum of the

numbers across all the nodes

34

34

34 34

34

34 34

Allreduce is based on a communication structure in trees

(binary is easier to implement)

MapReduce (streaming)/AllReduce-online/batch

1. Start the daemon

(communication system)

2. Each node makes an

online pass over its data

4. Use allreduce to average

the weights over all nodes

3. Initialize a tree on the

masternode

5. Broadcast the averaged

weights down to all nodes

6. Use it to initialize a

batch learning step

7. Send back the weights

and average with allreduce

8. Iterate other batch steps

Advantages of VW implementation

• Minimal additional programming effort

• Data location knowledge: use mapreduce infrastructure with only one mapper

• Vowpal wabbit (C/C++) is not RAM greedy

• Small synchronisation overhead

• time spent in AllReduce operation ≪ computation time

• Reduced stalling time while waiting for other nodes

• delayed initialization of AllReduce’s tree to capitalize on Hadoop speculative execution

• Rapid convergence with online then accuracy with batch

Episode III: Revenge of Hadoop

1. Start the daemon (./spanning_tree.cc)

2. Launch the MapReduce job

3. Kill the spanning tree

hadoop jar /home/hadoop/contrib/streaming/hadoop-streaming.jar \
-D mapreduce.map.speculative=true \
-D mapreduce.job.reduces=0 \
-input $in_directory \
-output $out_directory \
-files [“/usr/local/bin/vw,

/usr/lib64/libboost_program_options.so, /lib64/libz.so.1”]
-file runvw.sh \
-mapper runvw.sh \
-reducer NONE

Running vowpal wabbit on AWS

AWS Best practice: Transient clusters

• Get your data on S3 buckets

• Start an EMR (Elastic Map Reduce) cluster

• Bootstrap actions (install, config, etc.)

• Run your job(s) (steps)

• Shut down your cluster
Pros and cons

• Easy setup / works well

• Minimum maintenance

• Low cost

• Logs ???????

• Debugging can be is difficult

→ use an experimental cluster or a VM

Beware of the environment variables

VW needs MapReduce environment variables

• total number of mapper tasks

• number ID of the map task for each node

• ID of the MapReduce job

• private dns of the master node within the cluster

Update the names in VW-cluster code

Hack the environment variables with python

vw --total $nmappers --node $mapper \
--unique_id $mapred_job_id -d /dev/stdin \
--span_server $submit_host \
--loss_function=logistic -f sgd.vwmodel

Number of splits

You need to brute force the number of splits to the map reduce job

• Advice from John Langford / approach in the code

• compute the size of your minimal data size (total / nb of nodes)

• use option –D mapreduce.min.split.size
→ didn’t work

• Dirty workaround

• split the data into as many file as your nodes

• store it in a .gz file

Running vowpal wabbit on AWS

ip-10-38-138-36.eu-west-1.compute.internal
Starting training
SGD ...
creating quadratic features for pairs: ft tt ff fi ti
final_regressor = sgd.vwmodel
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5

average since example example current current current
loss last counter weight label predict features
0.693147 0.693147 2 1.0 -1.0000 0.0000 325
0.400206 0.107265 3 2.0 -1.0000 -2.1783 325
[...]
0.414361 0.404726 131073 131072.0 -1.0000 -4.5625 325
0.406345 0.398329 262145 262144.0 1.0000 -1.8379 325
0.388375 0.370405 524289 524288.0 -1.0000 -1.3313 325

Running vowpal wabbit on AWS

0.388375 0.370405 524289 524288.0 -1.0000 -1.3313 325
connecting to 10.38.138.36 = ip-10-38-138-36.eu-west-1.compute.internal:26543
wrote unique_id=2
wrote total=1
wrote node=0
read ok=1
read kid_count=0
read parent_ip=255.255.255.255
read parent_port=65535
Net time taken by process = 8.767000 seconds
finished run
number of examples per pass = 1000001
passes used = 1
weighted example sum = 1000000.000000
weighted label sum = -679560.000000
average loss = 0.380041
total feature number = 325000000

Running vowpal wabbit on AWS

BFGS ...
[...]
num sources = 1
connecting to 10.38.138.36 = ip-10-38-138-36.eu-west-1.compute.internal:26543
wrote unique_id=4
wrote total=1
wrote node=0
[...]
read parent_ip=255.255.255.255
read parent_port=65535
Maximum number of passes reached.
Net time taken by process = 10.55 seconds
finished run
number of examples = 1800002
weighted example sum = 1.8e+06
weighted label sum = -1.22307e+06
average loss = 0.350998 h
total feature number = 585000000

Running vowpal wabbit on AWS

On Hadoop with 5 nodes

6 minutes

On a single machine

26 minutes and 30 seconds

6.4 GB

50 000 000 samples

52 974 510 080 features

Concluding remarks

Less computational time allows to explore more data
• Work on more data

• Include more features to the analysis

• Useful as a platform for research and experimentation

Optimization algorithms

• Lots of interesting papers (Langford, Bottou, Agarwal, LeCun, Duchi, Zinkevich, …)

VW on Hadoop

Learn a lot by doing and debugging :-)

If possible, use online learning when time of computation is the bottleneck

Episode VII: The Force Awakens

Coming soon
• Pushes on github

Benchmarks
• How is the training time affected by the size of the data set (measure overhead)

• Benchmark available approaches on various large datasets and usecases

• Benchmark against Graphlab, MLlib

More VW
• Exhaustive comparison and association with complex models (exploit vw for feature

engineering and feature selection)

• Nonlinear online learning (neural networks, SVM, ...)

A few references
• John Langford – Hunchnet – github
• Bottou, Stochastic gradient descent tricks, Neural

Networks: Tricks of the Trade (2012)
• Yann LeCun’s lectures
• http://quantmetry-blog.com

@HeloiseNonne

Master node

Worker

Worker

Worker

