
Apache Samza: ���
Taking stream processing���
to the next level	

Martin Kleppmann — @martinkl	

Martin Kleppmann	

Hacker, designer, inventor, entrepreneur	

§  Co-founded two startups, Rapportive 	
⇒ LinkedIn	

§  Committer on Avro & Samza 	
 	
 	
⇒ Apache	

§  Writing book on data-intensive apps 	
⇒ O’Reilly	

§  martinkl.com | @martinkl	

Apache Kafka	
 Apache Samza	

Apache Kafka	
 Apache Samza	

Credit: Jason Walsh on Flickr	

https://www.flickr.com/photos/22882695@N00/2477241427/	

Credit: Lucas Richarz on Flickr	

https://www.flickr.com/photos/22057420@N00/5690285549/	

Things we would like to do���
(better)	

	

	

Provide timely, relevant updates to your newsfeed	

	

	

Update search results with new information as it appears	

	

	

“Real-time” analysis of logs and metrics	

Tools?	

Response latency	

Kafka & Samza	

Milliseconds to minutes	

Loosely coupled	

REST	

Synchronous	

Closely coupled	

Hours to days	

Loosely coupled	

Service 1	

Kafka	

events/messages	

Analytics	
 Cache maintenance	
 Notifications	

subscribe	
 subscribe	
 subscribe	

publish	
 publish	

Service 2	

Publish / subscribe	

§  Event / message = “something happened”	

–  Tracking: 	
 	
User x clicked y at time z	

–  Data change: 	
Key x, old value y, set to new value z	

–  Logging:	
 	
 	
Service x threw exception y in request z	

–  Metrics:	
 	
 	
Machine x had free memory y at time z	

§  Many independent consumers	

§  High throughput (millions msgs/sec)	

§  Fairly low latency (a few ms)	

Kafka at LinkedIn	

§  350+ Kafka brokers	

§  8,000+ topics	

§  140,000+ Partitions	

§  278 Billion messages/day	

§  49 TB/day in	

§  176 TB/day out	

§  Peak Load	

–  4.4 Million messages per second	

–  6 Gigabits/sec Inbound	

–  21 Gigabits/sec Outbound	

public interface StreamTask {	

	
void process(
IncomingMessageEnvelope envelope,	

	
 	
 	
 	
 	
MessageCollector collector,	

	
 	
 	
 	
 	
TaskCoordinator coordinator);	

}	

Samza API: processing messages	

getKey(), getMsg()	

commit(), shutdown()	

sendMsg(topic, key, value)	

Familiar ideas from MR/Pig/Cascading/…	

§  Filter 	
 	
 	
records matching condition	

§  Map 	
 	
 	
record ⇒ func(record)	

§  Join	
 	
 	
 	
two/more datasets by key	

§  Group 	
 	
 	
records with the same value in field	

§  Aggregate 	
records within the same group	

§  Pipe 	
 	
 	
job 1’s output ⇒ job 2’s input	

§  MapReduce assumes fixed dataset. ���
Can we adapt this to unbounded streams?	

Operations on streams	

§  Filter 	
 	
 	
records matching condition 	
✔ easy	

§  Map 	
 	
 	
record ⇒ func(record) 	
 	
✔ easy	

§  Join	
 	
 	
 	
two/more datasets by key���
	
 	
 	
 	
 	
…within time window, need buffer	

§  Group 	
 	
 	
records with the same value in field���
	
 	
 	
 	
 	
…within time window, need buffer	

§  Aggregate 	
records within the same group���
	
 	
 	
 	
 	
✔ ok… when do you emit result?	

§  Pipe 	
 	
 	
job 1’s output ⇒ job 2’s input���
	
 	
 	
 	
 	
✔ ok… but what about faults?	

Stateful stream processing���
(join, group, aggregate)	

Joining streams requires state	

§  User goes to lunch ⇒ click long after impression	

§  Queue backlog ⇒ click before impression	

§  “Window join”	

Join and aggregate	

Click-through rate	

Key-value	

store	

Ad impressions	
Ad clicks	

Remote state or local state?	

Samza job partition 0	
 Samza job partition 1	

e.g. Cassandra, MongoDB, …	

100-500k msg/sec/node	
 100-500k msg/sec/node	

1-5k queries/sec??	

Remote state or local state?	

Samza job partition 0	
 Samza job partition 1	

Local ���
LevelDB/	

RocksDB	

Local ���
LevelDB/	

RocksDB	

Another example: Newsfeed & following	

§  User 138 followed user 582	

§  User 463 followed user 536	

§  User 582 posted: “I’m at Berlin Buzzwords and it rocks”	

§  User 507 unfollowed user 115	

§  User 536 posted: “Nice weather today, going for a walk”	

§  User 981 followed user 575	

§  Expected output: “inbox” (newsfeed) for each user	

Newsfeed & following	

Fan out messages to followers	

Delivered messages	

582 => [

 138, 721, …	

]	

Follow/unfollow events	
Posted messages	

User 582 posted: “I’m at Berlin	

Buzzwords and it rocks”	
 User 138 followed user 582	

Notify user 138: {User 582 posted:	

“I’m at Berlin Buzzwords and it rocks”}	
Push notifications etc.	

	

	

Local state: ���
���

Bring computation and data���
together in one place	

Fault tolerance	

Kafka	
 Kafka	

YARN NodeManager	
 YARN NodeManager	

YARN���

RM	
 Samza Container	

Samza Container	

Samza Container	

Samza Container	

Machine 1	
 Machine 2	

Task	
 Task	

Task	
 Task	

Task	
 Task	

Task	
 Task	

BOOM	

Kafka	
 Kafka	

YARN NodeManager	
 YARN NodeManager	

YARN���

RM	
 Samza Container	

Samza Container	

Samza Container	

Samza Container	

Machine 1	
 Machine 2	

Task	
 Task	

Task	
 Task	

Task	
 Task	

Task	
 Task	

BOOM	

Kafka	

YARN NodeManager	

Machine 3	

YARN NodeManager	

Samza Container	

Samza Container	

Kafka	

YARN NodeManager	

Samza Container	

Samza Container	

Machine 2	

Task	
 Task	

Task	
 Task	

Kafka	

Machine 3	

Task	
 Task	

Task	
 Task	

L	

Fault-tolerant local state	

Samza job partition 0	
 Samza job partition 1	

Local ���
LevelDB/	

RocksDB	

Local ���
LevelDB/	

RocksDB	
Durable changelog	

replicate writes	

YARN NodeManager	

Samza Container	

Samza Container	

Kafka	

YARN NodeManager	

Samza Container	

Samza Container	

Machine 2	

Task	
 Task	

Task	
 Task	

Machine 3	

Task	
 Task	

Task	
 Task	

J	

Kafka	

Samza’s fault-tolerant local state	

§  Embedded key-value: very fast	

§  Machine dies ⇒ local key-value store is lost	

§  Solution: replicate all writes to Kafka!	

§  Machine dies ⇒ restart on another machine	

§  Restore key-value store from changelog	

§  Changelog compaction in the background (Kafka 0.8.1)	

When things go slow…	

Owned by���
Team X	

Team Y	
 Team Z	

Cascades of jobs	

Job 1	

Stream B	
Stream A	

Job 2	
 Job 3	

Job 4	
 Job 5	

Consumer goes slow	

Backpressure	
 Queue up	
Drop data	

Other jobs grind���
to a halt L	

Run out of���
memory L	

Spill to disk	

Oh wait… Kafka does this anyway!	

No thanks L	

Job 1	

Stream B	
Stream A	

Job 2	
 Job 3	

Job 4	
 Job 5	

Job 1 output	

Job 2 output	
 Job 3 output	

Samza always writes���
job output to Kafka	

MapReduce always writes���
job output to HDFS	

Every job output is a named stream	

§  Open: Anyone can consume it	

§  Robust: If a consumer goes slow, nobody else is affected	

§  Durable: Tolerates machine failure	

§  Debuggable: Just look at it	

§  Scalable: Clean interface between teams	

§  Clean: loose coupling between jobs	

Problem	
 Solution	

Need to buffer job output���
for downstream consumers	

Write it to Kafka!	

Need to make local state���
store fault-tolerant	

Write it to Kafka!	

Need to checkpoint job	

state for recovery	

Write it to Kafka!	

Recap	

Apache Kafka	
 Apache Samza	

kafka.apache.org	
 samza.incubator.apache.org	

Hello Samza (try Samza in 5 mins)	

Thank you!	

Samza:	

•  Getting started: 	
 	
samza.incubator.apache.org	

•  Underlying thinking:	
bit.ly/jay_on_logs	

•  Start contributing: 	
bit.ly/samza_newbie_issues	

Me:	

•  Twitter: 	
 	
 	
 	
@martinkl	

•  Blog: 	
 	
 	
 	
 	
martinkl.com	

