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My Background

• Cloudera:
• Open-Source Distribution of Hadoop (CDH): Hadoop, Hbase, Hive, 

Impala, Kafka, Mahout, Oozie, Pig, Search, Spark, Zookeeper, many 
more

• Enterprise Management and Security Tools

• Myself
• Hive team member in Cloudera
• Apache Hive Committer, PMC
• Excited to be back in Germany
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• Background: Hive, Spark, Hive on Spark
• Technical Deep Dive
• User-View
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Background: Hive

• MapReduce (2005)
• Open-source distributed processing engine.

• Hive (2007)
• Provides SQL access to MapReduce engine.
• Main use-case in online analytic (data warehouse) space
• Feature rich, mature (large community)
• De-facto standard for SQL on Hadoop
• Most-used Hadoop tool in Cloudera

Hive (SQL)Hive (SQL)

MapReduce (Processing)MapReduce (Processing)

HDFS (Storage)HDFS (Storage)
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Background: Spark

• Second wave of big-data innovation, many projects strive for 
improved distributed processing (Tez, Flink, etc)

• Spark (2009)
• General consensus that its most well-placed to replace MapReduce.
• Grown to be most active Apache project
• Pig, Mahout, Cascading, Flume, Solr integrating or moving onto 

Spark.
• Exposes more powerful API’s and abstractions, very easy to use.
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Background: Spark

MapReduce Spark

Data File RDD
Kept in memory

Program Map, Shuffle, Reduce
In that order

Many more transformations
Any order

Lifecycle Tasks = Java Processes
Short Lived Processes

Tasks != Java Process
Long Lived Processes (Executors)
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Hive on Spark: Goals

• Hive as access layer: Users can switch with minimal cost to 
better distributed processing engine => Better performance

• Goals: 
• Hive can run seamlessly on different processing engines (MR, Tez, and 

Spark).
• Hive on Spark supports full range of existing Hive features

Hive (SQL)Hive (SQL)

Spark (Processing)Spark (Processing)

HDFS (Storage)HDFS (Storage)
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• Background: Hive, Spark, Hive on Spark
• Technical Deep Dive
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Design Concepts
• Challenge:  Porting a mature system on a new processing engine
• Recap of advanced Functionality in Hive:

• SQL Syntax
• SQL data types
• User-Defined Functions
• File Formats

• Keeping most of the execution code (Hive operators) same 
across processing engines
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Design Concepts
• In general, we reuse the same Hive operators in Mapper/Reducer as in Spark local transformations.

MapReduce Spark

SparkTransform

Filter OpFilter Op

SparkTransform

GroupByOpGroupByOp

Mapper

Filter OpFilter Op

Reducer

GroupByOpGroupByOp
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• Spark allows us to organize same Hive operators in less phases
• MapReduce Job = Map Phase, Shuffle Phase, Red Phase

• Spark Job = Any number of “transformations” connected by 
‘shuffles’

Improvement: Eliminating Phases

Mapper Reducer

Transform Transform Transform

Shuffle

Shuffle Shuffle

Mapper ReducerShuffle
AA BB CC DD

AA B,CB,C DD
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Improvement: Eliminating Phases

Mapper Reducer

Transform Transform Transform

Shuffle

Shuffle Shuffle
(Sort)

Mapper ReducerShuffle
(Sort)

Select (key)Select (key)

SELECT src1.key FROM 
    (SELECT key FROM src1 JOIN src2 ON src1.key = src2.key)
ORDER BY src1.key;

Join 
src1, src2

Join 
src1, src2 Select(key)Select(key)

Emit 
ordered 

key

Emit 
ordered 

key

Select (key)Select (key)

Join src1, 
src2

Select(key)

Join src1, 
src2

Select(key)

Emit 
ordered 

key

Emit 
ordered 

key
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• Files are input of Mapper, output of Reducer.
• More MapReduce jobs means more file IO (to temp Hive directory)

• The problem does not exist in Spark
• In-memory RDD as input/output of Spark transforms.

Improvement: In-Memory

RDD

Mapper Reducer
Shuffle

Mapper Reducer
Shuffle

Transform Transform
Shuffle

RDD

Transform

RDD

Shuffle

RDD

File
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Improvement: Shuffle

• Shuffling is the bridge between Mapper and Reducer, it is 
data movement within one job.

• It is typically the most expensive part of MR job.
• Spark Shuffle: offers more efficient shuffling for specific use-

cases

Mapper

Filter OpFilter Op

Reducer

Count OpCount OpShuffle
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Improvement: Shuffle

• MapReduce shuffle-sort: hash-partitions and then sorts each 
partition.

• Select avg(value) from table group by key;
• => Spark “groupBy” transform
• In MapReduce, would do sorting unnecessarily

• Select key from table order by key;
• => Spark “orderBy” transform: range-partition {1,10}, {11,20}, parallel 

sorting
• In Mapreduce, used to hash-partition to 1 partition, sort in serial



16© 2014 Cloudera, Inc. All rights reserved.

Improvement: Process Lifecycle

• In MapReduce, each Map/Reduce phase spawns and terminates many 
processes (Mappers, Reducers)

• In Spark, each “Executor” can be long-lived, runs one or more tasks.  
• A set of Spark Executors = Spark “Application”.

• In Hive on Spark, one Hive user session has open one Spark 
Application.
• All queries of that user session re-use Application, can re-use the Executor 

processes.
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Improvement: Process Lifecycle

Mapper Reducer Mapper Reducer

Processes
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Improvement: Process Lifecycle

MinExecutors

InitExecutors

MaxExecutors
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User View
• Install Hadoop on cluster

• HDFS
• YARN (recommended)

• Install Spark (YARN mode recommended)
• Install Hive (will pick up static Spark configs, like spark.master, 

spark.serializer)
• From Versions: Hive 1.1, Spark 1.3, Hadoop 2.6

• In Hive client, run “Set hive.execution.engine=spark”;  //default is MR
• Run query
• The first query will start the Spark application (set of Executors)
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User View

Spark job status
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User View
Find your corresponding Spark application in the YARN UI 
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User View

•Click on link to Spark History Server for Corresponding Spark 
Application progress and information.
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Dynamic vs Static Allocation

For a Spark Application:
•Spark dynamic allocation: number of Executor instances 
variable.

• spark.executor.dynamicAllocation.enabled=true
• spark.executor.dynamicAllocation.initialExecutors=1
• spark.executor.dynamicAllocation.minExecutors=1
• spark.executor.dynamicAllocation.maxExecutors=10;

•Spark static allocation: number of Executor instances fixed.
• Spark.executor.instances = 10
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User View

• Things to tune: memory of Spark executors
• spark.executor.cores: number of cores per Spark executor.
• spark.executor.memory: maximum size of each Spark executor's Java heap 

memory when Hive is running on Spark.
• spark.driver.memory: maximum size of each Spark driver's Java heap memory 

when Hive is running on Spark.
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Perf Benchmarks

• 8 physical nodes
• Each node: 32 core, 64 GB
• 10000MB/s network between nodes
• Component Versions

• Hive:  spark-branch (April 2015)
• Spark: 1.3.0
• Hadoop: 2.6.0
• Tez: 0.5.3
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Perf Benchmarks

• 320GB and 4TB TPC-DS datasets

• Three engines share the most of the configurations 
• Memory Vectorization enabled
• CBO enabled 
• hive.auto.convert.join.noconditionaltask.size = 600MB 
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Perf Benchmarks

• Hive on Tez 
• hive.prewarm.numcontainers = 250
• hive.tez.auto.reducer.parallelism = true 
• hive.tez.dynamic.partition.pruning = true 

• Hive on Spark 
• spark.master = yarn-client 
• spark.executor.memory = 5120m 
• spark.yarn.executor.memoryOverhead = 1024 
• spark.executor.cores = 4 
• spark.kryo.referenceTracking = false 
• spark.io.compression.codec = lzf 



29© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks

• Data collection: Run each query twice, first to warm-up, 
second to measure.
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MR vs Spark vs Tez, 320GB
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MR vs Spark, 4TB
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Spark vs Tez, 4TB



33© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks
• Spark is as fastest on many queries
• Dynamic partition pruning makes Spark slower in some 

queries  (Q3, Q15, Q19). These queries benefit from 
eliminating some partition from bigger-table before a join. 

• Spark is slower on certain queries (common join, Q84) than 
Tez. Spark shuffle-sort improvements in the works in Spark 
community (Project Tungsten, etc)
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Conclusion
• Available in Hive 1.1+, CDH5.4+
• Follow HIVE-7292 for more updates
• Contributors from:



Thank you.
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SparkSQL and Hive on Spark
 SparkSQL is similar to Shark (discontinued)

 Forked a version from Hive, thus tied with a specific version

 Executing queries using Spark's transformations and actions, 
instead of Hive operators.

All SQL syntaxes, functionality implemented from scratch.

 Relatively new

 Suitable for Spark users occasionally needing to execute SQL



37© 2014 Cloudera, Inc. All rights reserved.

Impala?
 Tuned for extreme performance/ low latency

 Purpose-built for interactive BI and SQL analytics

 Best for high concurrency workloads and small result sets
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