
Hive on Spark
Szehon Ho

2© 2014 Cloudera, Inc. All rights reserved.

My Background

• Cloudera:
• Open-Source Distribution of Hadoop (CDH): Hadoop, Hbase, Hive,

Impala, Kafka, Mahout, Oozie, Pig, Search, Spark, Zookeeper, many
more

• Enterprise Management and Security Tools

• Myself
• Hive team member in Cloudera
• Apache Hive Committer, PMC
• Excited to be back in Germany

3© 2014 Cloudera, Inc. All rights reserved.

• Background: Hive, Spark, Hive on Spark
• Technical Deep Dive
• User-View

4© 2014 Cloudera, Inc. All rights reserved.

Background: Hive

• MapReduce (2005)
• Open-source distributed processing engine.

• Hive (2007)
• Provides SQL access to MapReduce engine.
• Main use-case in online analytic (data warehouse) space
• Feature rich, mature (large community)
• De-facto standard for SQL on Hadoop
• Most-used Hadoop tool in Cloudera

Hive (SQL)Hive (SQL)

MapReduce (Processing)MapReduce (Processing)

HDFS (Storage)HDFS (Storage)

5© 2014 Cloudera, Inc. All rights reserved.

Background: Spark

• Second wave of big-data innovation, many projects strive for
improved distributed processing (Tez, Flink, etc)

• Spark (2009)
• General consensus that its most well-placed to replace MapReduce.
• Grown to be most active Apache project
• Pig, Mahout, Cascading, Flume, Solr integrating or moving onto

Spark.
• Exposes more powerful API’s and abstractions, very easy to use.

6© 2014 Cloudera, Inc. All rights reserved.

Background: Spark

MapReduce Spark

Data File RDD
Kept in memory

Program Map, Shuffle, Reduce
In that order

Many more transformations
Any order

Lifecycle Tasks = Java Processes
Short Lived Processes

Tasks != Java Process
Long Lived Processes (Executors)

7© 2014 Cloudera, Inc. All rights reserved.

Hive on Spark: Goals

• Hive as access layer: Users can switch with minimal cost to
better distributed processing engine => Better performance

• Goals:
• Hive can run seamlessly on different processing engines (MR, Tez, and

Spark).
• Hive on Spark supports full range of existing Hive features

Hive (SQL)Hive (SQL)

Spark (Processing)Spark (Processing)

HDFS (Storage)HDFS (Storage)

8© 2014 Cloudera, Inc. All rights reserved.

• Background: Hive, Spark, Hive on Spark
• Technical Deep Dive
• User-View

9© 2014 Cloudera, Inc. All rights reserved.

Design Concepts
• Challenge: Porting a mature system on a new processing engine
• Recap of advanced Functionality in Hive:

• SQL Syntax
• SQL data types
• User-Defined Functions
• File Formats

• Keeping most of the execution code (Hive operators) same
across processing engines

10© 2014 Cloudera, Inc. All rights reserved.

Design Concepts
• In general, we reuse the same Hive operators in Mapper/Reducer as in Spark local transformations.

MapReduce Spark

SparkTransform

Filter OpFilter Op

SparkTransform

GroupByOpGroupByOp

Mapper

Filter OpFilter Op

Reducer

GroupByOpGroupByOp

11© 2014 Cloudera, Inc. All rights reserved.

• Spark allows us to organize same Hive operators in less phases
• MapReduce Job = Map Phase, Shuffle Phase, Red Phase

• Spark Job = Any number of “transformations” connected by
‘shuffles’

Improvement: Eliminating Phases

Mapper Reducer

Transform Transform Transform

Shuffle

Shuffle Shuffle

Mapper ReducerShuffle
AA BB CC DD

AA B,CB,C DD

12© 2014 Cloudera, Inc. All rights reserved.

Improvement: Eliminating Phases

Mapper Reducer

Transform Transform Transform

Shuffle

Shuffle Shuffle
(Sort)

Mapper ReducerShuffle
(Sort)

Select (key)Select (key)

SELECT src1.key FROM
 (SELECT key FROM src1 JOIN src2 ON src1.key = src2.key)
ORDER BY src1.key;

Join
src1, src2

Join
src1, src2 Select(key)Select(key)

Emit
ordered

key

Emit
ordered

key

Select (key)Select (key)

Join src1,
src2

Select(key)

Join src1,
src2

Select(key)

Emit
ordered

key

Emit
ordered

key

13© 2014 Cloudera, Inc. All rights reserved.

• Files are input of Mapper, output of Reducer.
• More MapReduce jobs means more file IO (to temp Hive directory)

• The problem does not exist in Spark
• In-memory RDD as input/output of Spark transforms.

Improvement: In-Memory

RDD

Mapper Reducer
Shuffle

Mapper Reducer
Shuffle

Transform Transform
Shuffle

RDD

Transform

RDD

Shuffle

RDD

File

14© 2014 Cloudera, Inc. All rights reserved.

Improvement: Shuffle

• Shuffling is the bridge between Mapper and Reducer, it is
data movement within one job.

• It is typically the most expensive part of MR job.
• Spark Shuffle: offers more efficient shuffling for specific use-

cases

Mapper

Filter OpFilter Op

Reducer

Count OpCount OpShuffle

15© 2014 Cloudera, Inc. All rights reserved.

Improvement: Shuffle

• MapReduce shuffle-sort: hash-partitions and then sorts each
partition.

• Select avg(value) from table group by key;
• => Spark “groupBy” transform
• In MapReduce, would do sorting unnecessarily

• Select key from table order by key;
• => Spark “orderBy” transform: range-partition {1,10}, {11,20}, parallel

sorting
• In Mapreduce, used to hash-partition to 1 partition, sort in serial

16© 2014 Cloudera, Inc. All rights reserved.

Improvement: Process Lifecycle

• In MapReduce, each Map/Reduce phase spawns and terminates many
processes (Mappers, Reducers)

• In Spark, each “Executor” can be long-lived, runs one or more tasks.
• A set of Spark Executors = Spark “Application”.

• In Hive on Spark, one Hive user session has open one Spark
Application.
• All queries of that user session re-use Application, can re-use the Executor

processes.

17© 2014 Cloudera, Inc. All rights reserved.

Improvement: Process Lifecycle

Mapper Reducer Mapper Reducer

Processes

18© 2014 Cloudera, Inc. All rights reserved.

Improvement: Process Lifecycle

MinExecutors

InitExecutors

MaxExecutors

19© 2014 Cloudera, Inc. All rights reserved.

• Background: Hive, Spark, Hive on Spark
• Technical Deep Dive
• User-View

20© 2014 Cloudera, Inc. All rights reserved.

User View
• Install Hadoop on cluster

• HDFS
• YARN (recommended)

• Install Spark (YARN mode recommended)
• Install Hive (will pick up static Spark configs, like spark.master,

spark.serializer)
• From Versions: Hive 1.1, Spark 1.3, Hadoop 2.6

• In Hive client, run “Set hive.execution.engine=spark”; //default is MR
• Run query
• The first query will start the Spark application (set of Executors)

21© 2014 Cloudera, Inc. All rights reserved.

User View

Spark job status

22© 2014 Cloudera, Inc. All rights reserved.

User View
Find your corresponding Spark application in the YARN UI

23© 2014 Cloudera, Inc. All rights reserved.

User View

•Click on link to Spark History Server for Corresponding Spark
Application progress and information.

24© 2014 Cloudera, Inc. All rights reserved.

Dynamic vs Static Allocation

For a Spark Application:
•Spark dynamic allocation: number of Executor instances
variable.

• spark.executor.dynamicAllocation.enabled=true
• spark.executor.dynamicAllocation.initialExecutors=1
• spark.executor.dynamicAllocation.minExecutors=1
• spark.executor.dynamicAllocation.maxExecutors=10;

•Spark static allocation: number of Executor instances fixed.
• Spark.executor.instances = 10

25© 2014 Cloudera, Inc. All rights reserved.

User View

• Things to tune: memory of Spark executors
• spark.executor.cores: number of cores per Spark executor.
• spark.executor.memory: maximum size of each Spark executor's Java heap

memory when Hive is running on Spark.
• spark.driver.memory: maximum size of each Spark driver's Java heap memory

when Hive is running on Spark.

26© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks

• 8 physical nodes
• Each node: 32 core, 64 GB
• 10000MB/s network between nodes
• Component Versions

• Hive: spark-branch (April 2015)
• Spark: 1.3.0
• Hadoop: 2.6.0
• Tez: 0.5.3

27© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks

• 320GB and 4TB TPC-DS datasets

• Three engines share the most of the configurations
• Memory Vectorization enabled
• CBO enabled
• hive.auto.convert.join.noconditionaltask.size = 600MB

28© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks

• Hive on Tez
• hive.prewarm.numcontainers = 250
• hive.tez.auto.reducer.parallelism = true
• hive.tez.dynamic.partition.pruning = true

• Hive on Spark
• spark.master = yarn-client
• spark.executor.memory = 5120m
• spark.yarn.executor.memoryOverhead = 1024
• spark.executor.cores = 4
• spark.kryo.referenceTracking = false
• spark.io.compression.codec = lzf

29© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks

• Data collection: Run each query twice, first to warm-up,
second to measure.

30© 2014 Cloudera, Inc. All rights reserved.

MR vs Spark vs Tez, 320GB

31© 2014 Cloudera, Inc. All rights reserved.

MR vs Spark, 4TB

32© 2014 Cloudera, Inc. All rights reserved.

Spark vs Tez, 4TB

33© 2014 Cloudera, Inc. All rights reserved.

Perf Benchmarks
• Spark is as fastest on many queries
• Dynamic partition pruning makes Spark slower in some

queries (Q3, Q15, Q19). These queries benefit from
eliminating some partition from bigger-table before a join.

• Spark is slower on certain queries (common join, Q84) than
Tez. Spark shuffle-sort improvements in the works in Spark
community (Project Tungsten, etc)

34© 2014 Cloudera, Inc. All rights reserved.

Conclusion
• Available in Hive 1.1+, CDH5.4+
• Follow HIVE-7292 for more updates
• Contributors from:

Thank you.

36© 2014 Cloudera, Inc. All rights reserved.

SparkSQL and Hive on Spark
 SparkSQL is similar to Shark (discontinued)

 Forked a version from Hive, thus tied with a specific version

 Executing queries using Spark's transformations and actions,
instead of Hive operators.

All SQL syntaxes, functionality implemented from scratch.

 Relatively new

 Suitable for Spark users occasionally needing to execute SQL

37© 2014 Cloudera, Inc. All rights reserved.

Impala?
 Tuned for extreme performance/ low latency

 Purpose-built for interactive BI and SQL analytics

 Best for high concurrency workloads and small result sets

	Hive on Spark
	My Background
	PowerPoint Presentation
	Background: Hive
	Background: Spark
	Folie 6
	Hive on Spark: Goals
	Folie 8
	Design Concepts
	Folie 10
	Improvement: Eliminating Phases
	Folie 12
	Improvement: In-Memory
	Improvement: Shuffle
	Folie 15
	Improvement: Process Lifecycle
	Folie 17
	Folie 18
	Folie 19
	User View
	Folie 21
	Folie 22
	Folie 23
	Dynamic vs Static Allocation
	Folie 25
	Perf Benchmarks
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Conclusion
	Thank you.
	Folie 36
	Folie 37

