cloudera

Hive on Spark

Szehon Ho

My Background

* Cloudera:

* Open-Source Distribution of Hadoop (CDH): Hadoop, Hbase, Hive,
Impala, Kafka, Mahout, Oozie, Pig, Search, Spark, Zookeeper, many
more

* Enterprise Management and Security Tools

* Myself
* Hive team member in Cloudera
* Apache Hive Committer, PMC
* Excited to be back in Germany

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 2

 Background: Hive, Spark, Hive on Spark
* Technical Deep Dive
» User-View

C|OUdel'a © 2014 Cloudera, Inc. All rights reserved. 3

Background: Hive

* MapReduce (2005)
* Open-source distributed processing engine.

* Hive (2007) I“
* Provides SQL access to MapReduce engine.
* Main use-case in online analytic (data warehouse) space
* Feature rich, mature (large community)
* De-facto standard for SQL on Hadoop

* Most-used Hadoop tool in Cloudera MapReduce (Processing)
e

Hive (SQL)

HDFS (Storage)

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 4

Background: Spark

* Second wave of big-data innovation, many projects strive for
improved distributed processing (Tez, Flink, etc)

* Spark (2009)
» General consensus that its most well-placed to replace MapReduce.
* Grown to be most active Apache project

* Pig, Mahout, Cascading, Flume, Solr integrating or moving onto
Spark.

* Exposes more powerful APl's and abstractions, very easy to use.

Sp crr‘l’zz

C|OUdel'a © 2014 Cloudera, Inc. All rights reserved. 5

Background: Spark

Data File RDD
Kept in memory

Program Map, Shuffle, Reduce Many more transformations
In that order Any order
Lifecycle Tasks = Java Processes Tasks !'= Java Process
Short Lived Processes Long Lived Processes (Executors)

Spor‘llg

© 2014 Cloudera, Inc. All rights reserved. 6

cloudera

Hive on Spark: Goals

« Hive as access layer: Users can switch with minimal cost to
better distributed processing engine => Better performance

« Goals:

« Hive can run seamlessly on different processing engines (MR, Tez, and

Spark).

« Hive on Spark supports full range of existing Hive features

Hive (SQL)

Spark (Processing)

HDFS (Storage)

cloudera

Spa

7S

© 2014 Cloudera, Inc. All rights reserved.

7

* Background: Hive, Spark, Hive on Spark
* Technical Deep Dive
* User-View

C|OUdel'a © 2014 Cloudera, Inc. All rights reserved. 8

Design Concepts

* Challenge: Porting a mature system on a new processing engine

* Recap of advanced Functionality in Hive:
* SQL Syntax
* SQL data types
» User-Defined Functions
* File Formats

» Keeping most of the execution code (Hive operators) same
across processing engines

C|OUdel'3 © 2014 Cloudera, Inc. All rights reserved. 9

Design Concepts

* In general, we reuse the same Hive operators in Mapper/Reducer as in Spark local transformations.

MapReduce Spark

SparkTransform

Reducer SparkTransform

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 10

Improvement: Eliminating Phases

* Spark allows us to organize same Hive operators in less phases
- MapReduce Job = Map Phase, Shuffle Phase, Red Phase

Mapper Shuffle Reducer Mapper Shuffle Reducer
A B = D

« Spark Job = Any number of “transformations” connected by

‘shuffles’
Transform Transform Transform
Shuffle

C|OUdel‘a dera, Inc. All rights reserved. 11

Improvement: Eliminating Phases

SELECT srcl.key FROM
(SELECT key FROM srcl JOIN src2 ON srcl.key = src2.key)
ORDER BY srcl.key;

Reducer

Mapper

Select(key)

Shuffle Reducer

Emit
(Sort)

Mapper Shuffle

Select (key)

Transform Transform
src2 ordered

© 2014 Cloudera, Inc. All rights reserved. 12

Shuffle

Select (key)

cloudera

Improvement: In-Memory

* Files are input of Mapper, output of Reducer.

* More MapReduce jobs means more file IO (to temp Hive directory)

Mapper

Transform

cloudera

—
RDD

Xl

Shuffle

File :
— —

st in Spark
* In-memory RDD as input/output of Spark transforms.

—
RDD

Transform

Mapper Reducer

—
RDD

Shuffle

Transform
—

RDD

© 2014 Cloudera, Inc. All rights reserved. 13

Improvement: Shuffle

Mapper Reducer

 Filter Op | Shuffle . Count Op

* Shuffling is the bridge between Mapper and Reducer, it is
data movement within one job.

* It Is typically the most expensive part of MR job.

* Spark Shuffle: offers more efficient shuffling for specific use-
cases

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 14

Improvement: Shuffle

* MapReduce shuffle-sort: hash-partitions and then sorts each
partition.

* Select avg(value) from table group by key;
* => Spark “groupBy” transform
* In MapReduce, would do sorting unnecessarily

Select key from table order by key;

* => Spark “orderBy” transform: range-partition {1,10}, {11,20}, parallel
sorting

* In Mapreduce, used to hash-partition to 1 partition, sort in serial

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 15

Improvement: Process Lifecycle

* In MapReduce, each Map/Reduce phase spawns and terminates many
processes (Mappers, Reducers)

* In Spark, each “Executor” can be long-lived, runs one or more tasks.
* A set of Spark Executors = Spark “Application”.

* In Hive on Spark, one Hive user session has open one Spark
Application.

» All queries of that user session re-use Application, can re-use the Executor
processes.

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 16

Improvement: Process Lifecycle

Processes

/ \ /\/
\/ \ \/

Mapper Reducer Mapper Reducer

cloudera

Improvement: Process Lifecycle

Executors

MaxExecutors

/\
/ N\

/ MinExecutors
tExecutors

Spark Spark Spark
Job1 Job2 Job3

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 18

* Background: Hive, Spark, Hive on Spark
* Technical Deep Dive
* User-View

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 19

User View

* Install Hadoop on cluster
» HDFS
* YARN (recommended)

Install Spark (YARN mode recommended)

Install Hive (will pick up static Spark configs, like spark.master,
spark.serializer)

From Versions: Hive 1.1, Spark 1.3, Hadoop 2.6

In Hive client, run “Set hive.execution.engine=spark”; //default is MR
Run query
The first query will start the Spark application (set of Executors)

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 20

User View

B: Jdbc hive2: fflncalhn5t IEHHB} select % from store_sales Drder by ss_item_sk;
In order to change the average load for a reducer {(in bytes):

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

set hive.exec.reducers.bytes.per.reducer==number=
In order to limit the maximum number of reducers:

set hive.exec.reducers.max=<=number>
In order to set a constant number of reducers:
set mapreduce. job. reduces=<number>

Starting Spark Job

Query HlVE on Spark job[@] stages:

INFO
INFO
INFO

S5tatus:

INFO

CurrentTime Stageld_StageAttemptId:
B9
Bg:
B9
Ba:
B9
Ba:
B9
2a:
Bg9:
B9
Bg:
B9
B9
B9
Ba:
B9

a
1

Running {(Hive on Spark job[@])
Job Progress Format

INFO 2015-85-13
INFO 2815-B5-13
INFO 2815-85-13
INFO 2815-85-13
INFO 2815-85-13
INFO 2815-85-13
INFO 2815-85-13
INFO 2015-85-13
INFO 2815-B5-13
INFO 2015-85-13
INFO 2815-B5-13
INFO 2015-85-13
INFO 2815-A5-13
INFO 2815-85-13
INFO 2815-85-13
INFO 2815-85-13
cloudera

58:
58:
5B:
5B:
S5B:
5B:
S5B:
5B:
5B
58:
58:
5B
58:
S5B:
5B:
S5B:

83,243
84,255
87,285
18,310
12,327
13,336
14,344
15,353
17,369
28,392
23,414
26,435
29,458
32,480
35,503
ig, 527

Stage-@_8:
Stage-8_0@:

Stage-@_9:
Stage-@_8:
Stage-@_B:
Stage-@_9:
Stage-0_0:
Stage-@_0:
Stage-0_0:
Stage-@_8:
Stage-8_0@:
Stage-@_9:
Stage-0_@:
Stage-@_B:
Stage-@_9:
Stage-0_0:

B/ /5830

Bi{+714) /5830
B(+714) /5830
B{+714) /5838
3(+714) /5830
B{+714) /5838
O{+714) /5830
18(+714) /5830
11{+714) /5838
11(+714) /5830
11{+714) /5838
11(+714) /5830
11{+714) /5830
11(+714) /5830
11(+714) /5830
11(+714) /5830

= 4158d44f-ec2@-4c5l-afba-TEBeebZabbTif

asl
as1
as1
as1
as1
as1
as1

sl
as1
asl
as1
asl
as1
sl
as1
sl

SucceededTasksCount{+RunningTasksCount-FailedTasksCount) /TotalTasksCount [StageCost]
Stage-1_0:
Stage-1_8:
Stage-1_08:
Stage-1_08:
Stage-1_08:
Stage-1_08:
Stage-1_0:
Stage-1_0:
Stage-1_0a:
Stage-1_0:
Stage-1_0@:
Stage-1_0:
Stage-1_8@:
Stage-1_0:
Stage-1_0:
Stage-1_0:

Spark job status

© 2014 Cloudera, Inc. All rights reserved.

21

User View

Find your corresponding Spark application in the YARN Ul

Logged in as: dr.who

All Applications

+ Cluster Cluster Metrics
About Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores Active Decommissioned Lost Unhealthy Rebooted
Nodes Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved Nodes Nodes Nodes Nodes Nodes
Applications 72 0 3 69 105 1.21 TB 1.59 TB 408 GB 717 816 238 34 0 0 2 0
NEW User Metrics for dr.who
NEW SAVING . - -
SUBMITTED Apps Apps Apps Apps Containers Containers Containers Memory Memory Memory VCores VCores VCores
ACCEPTED Submitted Pending Running Completed Running Pending Reserved Used Pending Reserved Used Pending Reserved
RUNNING 0 0 3 69 0 0 0 0B 0B 0B 0 0 0
FINISHED
FAILED Show 20 4 entries Search:
KILLED ID * User ¢ Name ¢ Application Type ¢ Queue ¢ StariTime £ FinishTime & State ¢ FinalStatus Progress ¢ Tracking Ul
Scheduler application 1431470322162 0072 systest Hive on Spark SPARK root.systest Wed May 13 N/A RUNNING UNDEFINED ApplicationMaster
13:45:53
» Tools -0500 2015
application 1431470322162 0071 systest Hive on Spark SPARK root.systest Wed May 13 N/A RUNNING UNDEFINED ApplicationMaster
13:45:12
-0500 2015
application 1431470322162 0070 systest Hive on Spark SPARK root.systest Wed May 13 N/A RUNNING UNDEFINED ApplicationMaster
13:43:35
-0500 2015
application 1431470322162 0063 systest Hive on Spark SPARK root.systest Wed May 13 Wed May 13 FINISHED SUCCEEDED History
11:57:28 12:17:14
-0500 2015 -0500 2015
application 1431470322162 0068 hive analyze table web_site compute MAPREDUCE root.hive Tue May 12 Tue May 12 FINISHED SUCCEEDED History
statistics(Stage-0) 23:03:13 23:03:26
-0500 2015 -0500 2015
application 1431470322162 0067 hive analyze table web_sales compute MAPREDUCE root.hive Tue May 12 Tue May 12 FINISHED SUCCEEDED History
statistics(Stage-0) 22:58:00 23:02:59

-0500 2015 -0500 2015

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 22

User View

Click on link to Spark History Server for Corresponding Spark
Application progress and information.

Spoﬁ e Jobs Stages Storage Environment Executors Hive on Spark application Ul

Spark Jobs (?)

Total Duration: 1.0 min
Scheduling Mode: FIFO
Active Jobs: 1
Completed Jobs: 1

Active Jobs (1)
Job Id Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total
1 foreachAsync at RemoteHiveSparkClient.java:254 2015/05/13 14:39:53 12s 0/4 - 23/420
Completed Jobs (1)
Job Id Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total
0 foreachAsync at RemoteHiveSparkClient.java:254 2015/05/13 14:39:37 5s 17 e e —————

cilouoera © 2014 Cloudera, Inc. All rights reserved. 23

Dynamic vs Static Allocation

For a Spark Application:

Spark dynamic allocation: number of Executor instances

variable.

 spark.executor.dynamicAllocation.enabled=true

» spark.executor.dynamicAllocation.initialExecutors=1
 spark.executor.dynamicAllocation.minExecutors=1
 spark.executor.dynamicAllocation.maxExecutors=10;

‘Spark static allocation: number of Executor instances fixed.
« Spark.executor.instances = 10

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 24

User View

* Things to tune: memory of Spark executors
« spark.executor.cores: number of cores per Spark executor.

* spark.executor.memory: maximum size of each Spark executor's Java heap
memory when Hive is running on Spark.

» spark.driver.memory: maximum size of each Spark driver's Java heap memory
when Hive is running on Spark.

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 25

Perf Benchmarks

* 8 physical nodes
« Each node: 32 core, 64 GB
* 10000MB/s network between nodes

* Component Versions
* Hive: spark-branch (April 2015)
* Spark: 1.3.0
« Hadoop: 2.6.0
* Tez: 0.5.3

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 26

Perf Benchmarks
 320GB and 4TB TPC-DS datasets

* Three engines share the most of the configurations

« Memory Vectorization enabled
* CBO enabled
* hive.auto.convert.join.noconditionaltask.size = 600MB

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 27

Perf Benchmarks

* Hive on Tez

* hive.prewarm.numcontainers = 250

* hive.tez.auto.reducer.parallelism = true

* hive.tez.dynamic.partition.pruning = true

* Hive on Spark
* spark.master = yarn-client
* spark.executor.memory = 5120m
* spark.yarn.executormemoryOverhead = 1024
* Spark.executor.cores = 4
» spark.kryo.referenceTracking = false
* spark.io.compression.codec = |zf

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 28

Perf Benchmarks

- Data collection: Run each query twice, first to warm-up,
second to measure.

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 29

MR vs Spark vs Tez, 320GB

1000
900
800

700
600 MR

500 ® Spark

400 Tez
300
200

mg._-_l.Ll.l.l.l.I- L L

Simple Simple Simple Q3 415 Q19 021 22 028 Qa2 a4 0Bs Qan
count(*) mapjoin common
join

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 30

MR vs Spark, 4TB

7000
6000
5000
4000
®MR
3000 B Spark

2000

- L 1 L
D [— — I L L — | .. |
Q14 Q28 Qg2 Qa4 88 Qan

Q21 Q22

Simpla Simple map Simpla Q3 Q15
count(®) join COMmmon
join

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 31

Spark vs Tez, 4TB

1600
1400
1200
1000
800
600
400
200

o W= - . . .

Simple Simple Simpls O3 015 a1
couni(®*} map join common
join

cloudera

W Spark

— [. ||
L 21 o2z o288 82 084

Qaa Qa0

© 2014 Cloudera, Inc. All rights reserved. 32

Perf Benchmarks

* Spark is as fastest on many queries

* Dynamic partition pruning makes Spark slower in some
queries (Q3, Q15, Q19). These queries benefit from
eliminating some partition from bigger-table before a join.

* Spark is slower on certain queries (common join, Q84) than
Tez. Spark shuffle-sort improvements in the works in Spark
community (Project Tungsten, etc)

C|OUdel'3 © 2014 Cloudera, Inc. All rights reserved. 33

Conclusion

* Available in Hive 1.1+, CDH5.4+
* Follow HIVE-7292 for more updates
* Contributors from:

cloudera

Ask Bigger Que

databricks

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 34

SparkSQL and Hive on Spark

* SparkSQL is similar to Shark (discontinued)
* Forked a version from Hive, thus tied with a specific version

* Executing queries using Spark's transformations and actions,
iInstead of Hive operators.

*All SQL syntaxes, functionality implemented from scratch.
* Relatively new

* Suitable for Spark users occasionally needing to execute SQL

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 36

Impala?

* Tuned for extreme performance/ low latency
* Purpose-built for interactive Bl and SQL analytics

* Best for high concurrency workloads and small result sets

CIOUdera © 2014 Cloudera, Inc. All rights reserved. 37

	Hive on Spark
	My Background
	PowerPoint Presentation
	Background: Hive
	Background: Spark
	Folie 6
	Hive on Spark: Goals
	Folie 8
	Design Concepts
	Folie 10
	Improvement: Eliminating Phases
	Folie 12
	Improvement: In-Memory
	Improvement: Shuffle
	Folie 15
	Improvement: Process Lifecycle
	Folie 17
	Folie 18
	Folie 19
	User View
	Folie 21
	Folie 22
	Folie 23
	Dynamic vs Static Allocation
	Folie 25
	Perf Benchmarks
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Conclusion
	Thank you.
	Folie 36
	Folie 37

