
© 2014 MapR Technologies 1© 2014 MapR Technologies

Drilling Into Drill: Flexiperf

Jacques Nadeau, Architect and VP Apache Drill

February 19, 2015

© 2014 MapR Technologies 2© 2014 MapR Technologies

“Drill isn’t just about SQL-on-Hadoop. It’s about SQL-on-

pretty-much-anything, immediately, and without formality.”
-Andrew Brust, GigaOM Research, Dec

2014

© 2014 MapR Technologies 3

Agenda

• What?
– SQL like mom made
– Punk SQL

• How?
– Flexibility
– Performance

• Who & When

© 2014 MapR Technologies 4

SQL Like Mom Made

© 2014 MapR Technologies 5

SoH Table Stakes: Warehousing and Business Intelligence

ANSI Syntax
• SELECT, FROM, WHERE, JOIN,

HAVING, ORDER BY, WITH,
CTAS, OVER*, ROLLUP*, CUBE*,
ALL, EXISTS, ANY, IN, SOME

• VarChar, Int, BigInt, Decimal,
VarBinary, Timestamp, Float,
Double, etc.

• Subqueries, scalar subqueries*,
partition pruning, CTE

Interactive SQL Workloads

• Data warehouse offload
• Tableau, ODBC, JDBC
• TPC-H & TPC-DS-like

workloads

*alpha or imminent

Standard Hadoop Tools

• Supports Hive SerDes
• Supports Hive UDFs
• Supports Hive Metastore

© 2014 MapR Technologies 6

Punk SQL

© 2014 MapR Technologies 7

Punk SQL: SQL for a Hadoop World
Modern Syntax

• Path based queries and
wildcards
– select * from /my/logs/
– select * from /revenue/*/q2

• Modern data types
– Any, Map, Array (JSON)

• Complex Functions and
Relational Operators
– FLATTEN, kvgen,

convert_from, convert_to,
repeated_count, etc

New Workloads

• JSON Sensor analytics
• Complex data analysis
• Alternative DSLs

New Ways to Work

• Query without prep
• Workspaces without admin

intervention
• Expose query as MapReduce
• Expose query as Spark RDD

© 2014 MapR Technologies 8© 2014 MapR Technologies

How?

© 2014 MapR Technologies 9

Flexibility
your tool should
be flexible…

so you don’t have to be

© 2014 MapR Technologies 10

Flexibility is a Vision, Usability, a Religion

• Deployment
• Data Model
• Schema
• Security
• Access Methods

© 2014 MapR Technologies 11

Supporting the Changing Roles of Big Data
Data Dev Circa 2000

1. Developer comes up with
requirements

2. DBA defines tables

3. DBA defines indices

4. DBA defines FK relationships

5. Developer stores data

6. BI builds reports

7. Analyst views reports

8. DBA adds materialized views

Data Today

1. Developer builds app,
defines schema, stores
data

2. Analyst queries data

3. Data engineer fixes
performance problems or
fills functionality gaps

© 2014 MapR Technologies 12

Distributed on Hadoop

Distributed

Single or CLI/Embedded

Drill Deployment is Easy

• Single Daemon for all purposes
• No special considerations for

scaling or availability
• With or without DFS
• Works with other data systems

(Mongo, Cassanrda & JDBC
coming soon)

• Runs on Linux, Mac or Windows
• No separate database
• JSON everything
• Access via HTTP, Java, C, JDBC,

ODBC, CLI

Drillbit

Drillbit Drillbit Drillbit

Drillbit Drillbit Drillbit

DFS DFS DFS

© 2014 MapR Technologies 13

Drill Provides A Flexible Data Model

HBase

JSON
BSON

CSV
TSV

Parquet
Avro

Schema-lessFixed schema

Flat

Complex

Flexibility

Name Gender Age

Michael M 6

Jennifer F 3

{
 name: {
 first: Michael,
 last: Smith
 },
 hobbies: [ski, soccer],
 district: Los Altos
}
{
 name: {
 first: Jennifer,
 last: Gates
 },
 hobbies: [sing],
 preschool: CCLC
}

RDBMS/SQL-on-Hadoop table

Apache Drill table

F
le

xi
bi

lit
y

© 2014 MapR Technologies 14

Leave Your Data Where it is. Access it Centrally & Uniformly.

• Drill is storage agnostic
• Interacts to storage through

plugins
• Storage plugins expose optimizer

rules
– Optimizer rules work directly on

logical operation to expose
maximum capabilities

• Reference multiple Hive, HBase,
MongoDB, DFS, etc systems

© 2014 MapR Technologies 15

Leverage that Massive Scalable Redundant Infrastructure

Single Store for Data and Metadata
• HDFS is already your single canonical store
• Don’t create a secondary metadata store

Avoid Metadata Management and synchronization
• Store metadata inline

– If you can’t, store it next to files

• Move directories around at will
• Delete things at will

© 2014 MapR Technologies 16

Flexibility in how you describe your data

• Drill doesn’t require schema, detects file types based on
– extensions
– magic bytes (e.g. PAR1)
– systems settings

• Query can be planned on any file, anywhere
• Data types are determined as data arrives
• Some formats have known schema

– If they don’t, you can expose them as such through views
– Views are simply JSON files that define view SQL

© 2014 MapR Technologies 17© 2014 MapR Technologies

Product Walkthrough

© 2014 MapR Technologies 18

Business dataset {
"business_id": "4bEjOyTaDG24SY5TxsaUNQ",
"full_address": "3655 Las Vegas Blvd S\nThe Strip\nLas Vegas, NV 89109",
"hours": {

"M onday": {"close": "23:00", "open": "07:00"},
"Tuesday": {"close": "23:00", "open": "07:00"},
"Friday": {"close": "00:00", "open": "07:00"},
"W ednesday": {"close": "23:00", "open": "07:00"},
"Thursday": {"close": "23:00", "open": "07:00"},
"Sunday": {"close": "23:00", "open": "07:00"},
"Saturday": {"close": "00:00", "open": "07:00"}

},
"open": true,
"categories": ["Breakfast & Brunch", "Steakhouses", "French", "Restaurants"],
"city": "Las Vegas",
"review _count": 4084,
"nam e": "M on Am i Gabi",
"neighborhoods": ["The Strip"],
"longitude": -115.172588519464,
"state": "NV",
"stars": 4.0,

 "attributes": {
"Alcohol": "full_bar”,

 "N oise Level": "average",
"H as TV": false,
"Attire": "casual",
"Am bience": {

"rom antic": true,
"intim ate": false,
"touristy": false,
"hipster": false,

 "classy": true,
"trendy": false,

 "casual": false
},
"G ood For": {"dessert": false, "latenight": false, "lunch": false,

 "dinner": true, "breakfast": false, "brunch": false},
}

}

© 2014 MapR Technologies 19

Reviews dataset

{
 "votes": {"funny": 0, "useful": 2, "cool": 1},
 "user_id": "Xqd0DzHaiyRqVH3W RG7hzg",
 "review _id": "15SdjuK7Dm YqUAj6rjGow g",
 "stars": 5,
 "date": "2007-05-17",
 "text": "dr. goldberg offers everything ...",
 "type": "review ",
 "business_id": "vcNAW iLM 4dR7D2nw w J7nCA"
}

© 2014 MapR Technologies 20

Zero to Results in 2 minutes
$ tar -xvzf apache-drill-0.7.0.tar.gz

$ bin/sqlline -u jdbc:drill:zk= local

> SELECT state, city, count(*) AS businesses
 FRO M dfs.yelp.̀ business.json`
 GRO UP BY state, city
 O RDER BY businesses DESC LIM IT 10;

+ ------------+ ------------+ -------------+
| state | city | businesses |
+ ------------+ ------------+ -------------+
| NV | Las Vegas | 12021 |
| AZ | Phoenix | 7499 |
| AZ | Scottsdale | 3605 |
| EDH | Edinburgh | 2804 |
| AZ | M esa | 2041 |
| AZ | Tem pe | 2025 |
| NV | Henderson | 1914 |
| AZ | Chandler | 1637 |
| W I | M adison | 1630 |
| AZ | Glendale | 1196 |
+ ------------+ ------------+ -------------+

Install

Q uery files and
directories

Results

Launch shell
(em bedded

m ode)

© 2014 MapR Technologies 21

Intuitive SQL access to complex data
// It’s Friday 10pm in Vegas and looking for Hum m us

> SELECT nam e, stars, b.hours.Friday friday, categories
 FRO M dfs.yelp.̀ business.json ̀b
 W HERE b.hours.Friday.̀ open ̀< '22:00' AND
 b.hours.Friday.̀ close ̀> '22:00' AND
 REPEATED_CO NTAINS(categories, 'M editerranean') AND
 city = 'Las Vegas'
 O RDER BY stars DESC
 LIM IT 2;

+ ------------+ ------------+ ------------+ ------------+
| nam e | stars | friday | categories |
+ ------------+ ------------+ ------------+ ------------+
| O lives | 4.0 | {"close":"22:30","open":"11:00"} | ["M editerranean","Restaurants"] |
| M arrakech M oroccan Restaurant | 4.0 | {"close":"23:00","open":"17:30"} |
["M editerranean","M iddle Eastern","M oroccan","Restaurants"] |
+ ------------+ ------------+ ------------+ ------------+

Q uery data
w ith any
levels of
nesting

© 2014 MapR Technologies 22

ANSI SQL compatibility

//Get top cool rated businesses

 SELECT b.nam e from dfs.yelp.̀ business.json ̀b
 W HERE b.business_id IN
 (SELECT r.business_id FRO M dfs.yelp.̀ review.json ̀r
 GRO UP BY r.business_id HAVING SUM (r.votes.cool) > 2000 O RDER BY
 SUM (r.votes.cool) DESC);

+ ------------+
| nam e |
+ ------------+
| Earl of Sandw ich |
| XS Nightclub |
| The Cosm opolitan of Las Vegas |
| W icked Spoon |
+ ------------+

Use fam iliar SQ L
functionality (Joins,

Aggregations,
Sorting, Sub-

queries, SQ L data
types)

© 2014 MapR Technologies 23

Logical views
//Create a view com bining business and review s datasets

> CREATE O R REPLACE VIEW dfs.tm p.BusinessReview s AS
 SELECT b.nam e, b.stars, r.votes.funny,
 r.votes.useful, r.votes.cool, r.̀ date`
 FRO M dfs.yelp.̀ business.json ̀b, dfs.yelp.̀ review.json ̀r
 W HERE r.business_id = b.business_id;

+ ------------+ ------------+
| ok | sum m ary |
+ ------------+ ------------+
| true | View 'BusinessReview s' created successfully in 'dfs.tm p' schem a |
+ ------------+ ------------+

> SELECT CO UNT(*) AS Total FRO M dfs.tm p.BusinessReview s;

+------------+
| Total |
+------------+
| 1125458 |
+------------+

Lightw eight file
system based

view s for
granular and de-
centralized data
m anagem ent

© 2014 MapR Technologies 24

Materialized Views AKA Tables
> ALTER SESSIO N SET ̀ store.form at̀ = 'parquet';

> CREATE TABLE dfs.yelp.BusinessReview sTbl AS
 SELECT b.nam e, b.stars, r.votes.funny funny,
 r.votes.useful useful, r.votes.cool cool, r.̀ date`
 FRO M dfs.yelp.̀ business.json ̀b, dfs.yelp.̀ review.json ̀r
 W HERE r.business_id = b.business_id;

+ ------------+ ---------------------------+
| Fragm ent | Num ber of records w ritten |
+ ------------+ ---------------------------+
| 1_0 | 176448 |
| 1_1 | 192439 |
| 1_2 | 198625 |
| 1_3 | 200863 |
| 1_4 | 181420 |
| 1_5 | 175663 |
+ ------------+ ---------------------------+

Save analysis
results as tables
using fam iliar
CTAS syntax

© 2014 MapR Technologies 25© 2014 MapR Technologies

Working with repeated values

© 2014 MapR Technologies 26

Extensions to ANSI SQL to work with repeated values

// Flatten repeated categories

> SELECT nam e, categories
 FRO M dfs.yelp.̀ business.json ̀LIM IT 3;

+ ------------+ ------------+
| nam e | categories |
+ ------------+ ------------+
| Eric Goldberg, M D | ["Doctors","Health & M edical"] |
| Pine Cone Restaurant | ["Restaurants"] |
| Deforest Fam ily Restaurant | ["Am erican (Traditional)","Restaurants"] |
+ ------------+ ------------+

> SELECT nam e, FLATTEN(categories) AS categories
 FRO M dfs.yelp.̀ business.json ̀LIM IT 5;
+ ------------+ ------------+
| nam e | categories |
+ ------------+ ------------+
| Eric Goldberg, M D | Doctors |
| Eric Goldberg, M D | Health & M edical |
| Pine Cone Restaurant | Restaurants |
| Deforest Fam ily Restaurant | Am erican (Traditional) |
| Deforest Fam ily Restaurant | Restaurants |
+ ------------+ ------------+

Dynam ically
flatten repeated
and nested data
elem ents as part
of SQ L queries.

No ETL necessary

© 2014 MapR Technologies 27

Extensions to ANSI SQL to work with repeated values

// Get m ost com m on business categories

> SELECT category, count(*) AS categorycount
 FRO M (SELECT nam e, FLATTEN(categories) AS category
 FRO M dfs.yelp.̀ business.json)̀ c
 GRO UP BY category O RDER BY categorycount DESC;

+ ------------+ ------------+
| category | categorycount|
+ ------------+ ------------+
| Restaurants | 14303 |
…
| Australian | 1 |
| Boat Dealers | 1 |
| Firew ood | 1 |
+ ------------+ ------------+

© 2014 MapR Technologies 28© 2014 MapR Technologies

Working with Dynamic Columns

© 2014 MapR Technologies 29

Check ins dataset {
 "checkin_info":{
 "3-4":1,
 "13-5":1,
 "6-6":1,
 "14-5":1,
 "14-6":1,
 "14-2":1,
 "14-3":1,
 "19-0":1,
 "11-5":1,
 "13-2":1,
 "11-6":2,
 "11-3":1,
 "12-6":1,
 "6-5":1,
 "5-5":1,
 "9-2":1,
 "9-5":1,
 "9-6":1,
 "5-2":1,
 "7-6":1,
 "7-5":1,
 "7-4":1,
 "17-5":1,
 "8-5":1,
 "10-2":1,
 "10-5":1,
 "10-6":1
 },
 "type":"checkin",
 "business_id":"Jw UE5Gm EO -sH1Fuw JgKBlQ "
}

© 2014 MapR Technologies 30

Makes it easy to work with dynamic/unknown columns
> jdbc:drill:zk= local> SELECT KVG EN (checkin_info) checkins
 FRO M dfs.yelp.̀ checkin.json ̀LIM IT 1;
+ ------------+
| checkins |
+ ------------+
| [{"key":"3-4","value":1},{"key":"13-5","value":1},{"key":"6-6","value":1},{"key":"14-5","value":1},{"key":"14-
6","value":1},{"key":"14-2","value":1},{"key":"14-3","value":1},{"key":"19-0","value":1},{"key":"11-5","value":1},
{"key":"13-2","value":1},{"key":"11-6","value":2},{"key":"11-3","value":1},{"key":"12-6","value":1},{"key":"6-
5","value":1},{"key":"5-5","value":1},{"key":"9-2","value":1},{"key":"9-5","value":1},{"key":"9-6","value":1},
{"key":"5-2","value":1},{"key":"7-6","value":1},{"key":"7-5","value":1},{"key":"7-4","value":1},{"key":"17-
5","value":1},{"key":"8-5","value":1},{"key":"10-2","value":1},{"key":"10-5","value":1},{"key":"10-6","value":1}] |
+ ------------+

> jdbc:drill:zk= local> SELECT FLATTEN(KVGEN(checkin_info)) checkins
FRO M dfs.yelp.̀ checkin.json ̀lim it 6;

+ ------------+
| checkins |
+ ------------+
| {"key":"3-4","value":1} |
| {"key":"13-5","value":1} |
| {"key":"6-6","value":1} |
| {"key":"14-5","value":1} |
| {"key":"14-6","value":1} |
| {"key":"14-2","value":1} |
+ ------------+

Convert M ap w ith
a w ide set of
dynam ic colum ns
into an array of
key-value pairs

© 2014 MapR Technologies 31

Makes it easy to work with dynamic/unknown columns

// Count total num ber of checkins on Sunday m idnight

 jdbc:drill:zk= local> SELECT SUM (checkintbl.checkins.̀ value)̀ as
SundayM idnightCheckins FRO M

 (SELECT FLATTEN (KVG EN (checkin_info)) checkins
 FRO M dfs.yelp.checkin.json)̀ checkintbl
 W HERE checkintbl.checkins.key= '23-0';

+ ------------------------+
| SundayM idnightCheckins |
+ ------------------------+
| 8575 |
+ ------------------------+

© 2014 MapR Technologies 32© 2014 MapR Technologies

Secure Access

© 2014 MapR Technologies 33

Access control that scales

PAM Authentication +
User Impersonation

Fine-grained row and
column level access control
with Drill Views – no
centralized security
repository required

Files HBase Hive

Drill
View 1

Drill
View 2

UUU

User

User

© 2014 MapR Technologies 34

Granular security permissions through Drill views

Name City State Credit Card #

Dave San Jose CA 1374-7914-3865-4817

John Boulder CO 1374-9735-1794-9711

Raw File (/raw/cards.csv)
Owner
Admins

Permission
Admins

Business Analyst Data Scientist

Name City State Credit Card #

Dave San
Jose

CA 1374-1111-1111-1111

John Boulder CO 1374-1111-1111-1111

Data Scientist View
(/views/maskedcards.csv)

Not a physical data copy

Name City State

Dave San
Jose

CA

John Boulder CO

Business Analyst View

Owner
Admins

Permission
Business
Analysts

Owner
Admins

Permission
Data

Scientists

© 2014 MapR Technologies 35

Secure your data without an extra service

• Drill Views
• Ownership chaining with

configurable delegation TTL
• Leverages existing HDFS

ACLs
• Complete security solution

without additional services or
software

MaskedSales.view
owner: Cindy

GrossSales.view
owner: dba

RawSales.parquet
owner: dba

Frank file
view perm

Cindy file
view perm

dba
delegated
read

2-step
 ow

n ersh
ip

 chai n

SQL by
Frank

© 2014 MapR Technologies 36

Summary

• Logical
– No physical data copies/silos

• Granular
– Row level and column level security controls

• De-centralized
– User impersonation respecting storage system permissions
– No separate permission repository for granular controls
– Integrated with Hadoop File System permissions and LDAP

• Self-service w/ governance
– If you have access to data, you control who and how widely can access it
– Audits

© 2014 MapR Technologies 37

Core Drill Architectural Goals

• Go fast when you don’t know anything
– And do “the right thing”

• Go faster when you do know things

© 2014 MapR Technologies 38

An Optimistic, Pipelined Purpose-Built DAG Engine

• Three-Level DAG
• Major Fragments (phases)
• Minor Fragments (threads)
• Operators (in-thread operations)

> explain plan for select * from customer limit 5;
…
00-00 Screen
00-01 SelectionVectorRemover
00-02 Limit(fetch=[5])
00-03 UnionExchange
01-01 ProducerConsumer
01-02 Scan(groupscan=[ParquetGroupScan […

© 2014 MapR Technologies 39

Each phase (MajorFragment) gets Parallelized (MinorFragment)

1:0 1:1 1:2 1:3

0:0

© 2014 MapR Technologies 40

Reading Data Quickly, Moving Data Quickly

• Highly Optimized Native Drill Readers:
– Vectorized Parquet, Text/CSV, JSON
– Also works with all Hive supported formats

• Drill supports partition pruning
– Adding direct physical property exposure soon for highly optimized

cases

• Drill parallelizes to maximum level format allows
– Also balances data locality and maximum parallelization

• Bespoke Asynchronous Zero-Copy RPC Layer
– Built specifically for Drill’s internal data format

© 2014 MapR Technologies 41

Parquet: The Format for the next decade

Apache Drill & Apache Parquet communities working together
• Better Ecosystem integration and decentralized metadata

– Self Description capabilities
– Ecosystem support for logical data types

• Enhanced Performance
– New vectorized reading
– Enhanced memory pooling and management
– Indexing*
– Better metadata positioning (for improved page pruning)*
– Enhanced vectorization and late materialization reading*

*In progress

© 2014 MapR Technologies 42

DISKDISK

Value Vectors & Record Batches: Drill’s In-memory Columnar Work Units

• Random access: sort without copy or
restructuring

• Fully specified in memory shredded complex
data structures

• Remove serialization or copy overhead at
node boundaries

• Spool to disk as necessary
• Interact with data in Java or C without copy

or overhead

Drill BitDrill Bit

Memory
overflow

 uses disk

© 2014 MapR Technologies 43

Runtime Compilation and Multi-phased planning

• Drill does best effort initial query parsing, planning and validation
– Where Drill doesn’t understand data, it provides support for ANY type,

allowing late type binding.

• At execution time, individual nodes do secondary pass
– Schema <--> Query parsing and validation
– Type casting, coercion and promotion
– Compilation based on schema requirements

• As schema changes, Drill supports recompilation of each
operator as necessary

© 2014 MapR Technologies 44

Runtime Compilation Pattern

Custom
Bytecode

Optimization

Custom
Bytecode

Optimization

Bytecode
Merging
Bytecode
Merging

Janino
compilation

Janino
compilation

CodeModel
Generated

Code

CodeModel
Generated

Code

Precompiled
Bytecode
Templates

Precompiled
Bytecode
Templates Loaded ClassLoaded Class

UDFsUDFs Source Code
Transformation
Source Code

Transformation

Bytecode
Merging
Bytecode
Merging

© 2014 MapR Technologies 45

Advanced Compilation Techniques

• Optimization based on observation and assembly
• Drill does a number of pre-machine-code-compilation

optimizations to ensure efficient execution
• Some examples:

– Removal of type and bounds checking
– Direct micro pointers for in-record-batch references
– Little endian data formats
– Bytecode-level scalar replacement

© 2014 MapR Technologies 46

Drill Does Vectorization & Supports Columnar Functions

• Drill often operates on more than one record at a time
– Word-sized manipulations
– SIMD instructions
– Manually coded algorithms

• Columnar Functions Improve Many Operations
– Bitmaps allow lightning fast null-checks and reduction in branching
– Type demotion to reduce memory and CPU computation overhead
– Direct Conversions where possible

© 2014 MapR Technologies 47

Drill provides advanced query telemetry

• What happened during query for all three levels of DAG
execution

• Each profile is stored as JSON file for easy review, sharing and
backup (at end of query execution)

• Profiles can be analyzed using Drill, allows:
– easy longitudinal analysis of workload
– multi-tenancy performance analysis
– impact of configuration changes to benchmark workloads

© 2014 MapR Technologies 48

A Color-coded visual layout and Gant timing chart is provided

© 2014 MapR Technologies 49

Memory Efficiency

• Drill’s in memory representation is designed to minimize memory
overhead

• Custom implementation of columnar-aware data structures
including hash tables, sort operations, etc.
– For example, entry overhead for hash table is 8 bytes per value
– Sort pointer overhead for sort is 2 to 4 bytes per entry

• Adding support for compressed columnar representation further
to improve compactness

© 2014 MapR Technologies 50

Scale and Concurrency
• Drill’s execution model leverages both local and remote exchanges for changes in

parallelization
– Muxing Local, Demuxing Local, Broadcast, Hash to Merge, Hash to Random, Ordered

Partition, Single Merge, Union

• All operations can be parallelized at the thread and node level
• Thread count and parallelization are influenced by data size, query phasing and

system load
– Administrators have basic queuing control to manage workload

• All threads are independent and pipelined, all run in a single process per node
• Node <> node communication is multiplexed, push-based with sub-socket back-

pressure support
• Testing has proceeded up to 150 nodes. Target is 1000 nodes by GA.

– Drill adapts data transfer size, buffers, muxing and other operations based on query scale to
minimize n2 multiplier effects

	Folie 1
	Folie 2
	Agenda
	SQL Like Mom Made
	SoH Table Stakes: Warehousing and Business Intelligence
	Punk SQL
	Punk SQL: SQL for a Hadoop World
	Folie 8
	Flexibility
	Flexibility is a Vision, Usability, a Religion
	Supporting the Changing Roles of Big Data
	Drill Deployment is Easy
	Drill Provides A Flexible Data Model
	Leave Your Data Where it is. Access it Centrally & Uniformly.
	Leverage that Massive Scalable Redundant Infrastructure
	Flexibility in how you describe your data
	Folie 17
	Business dataset
	Reviews dataset
	Zero to Results in 2 minutes
	Intuitive SQL access to complex data
	ANSI SQL compatibility
	Logical views
	Materialized Views AKA Tables
	Folie 25
	Extensions to ANSI SQL to work with repeated values
	Extensions to ANSI SQL to work with repeated values
	Folie 28
	Check ins dataset
	Makes it easy to work with dynamic/unknown columns
	Makes it easy to work with dynamic/unknown columns
	Folie 32
	Access control that scales
	Granular security permissions through Drill views
	Secure your data without an extra service
	Summary
	Core Drill Architectural Goals
	An Optimistic, Pipelined Purpose-Built DAG Engine
	Each phase (MajorFragment) gets Parallelized (MinorFragment)
	Reading Data Quickly, Moving Data Quickly
	Parquet: The Format for the next decade
	Folie 42
	Runtime Compilation and Multi-phased planning
	Runtime Compilation Pattern
	Advanced Compilation Techniques
	Drill Does Vectorization & Supports Columnar Functions
	Drill provides advanced query telemetry
	A Color-coded visual layout and Gant timing chart is provided
	Memory Efficiency
	Scale and Concurrency

