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“Drill isn’t just about SQL-on-Hadoop. It’s about SQL-on-

pretty-much-anything, immediately, and without formality.”
-Andrew Brust, GigaOM Research, Dec 

2014
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Agenda

• What?
– SQL like mom made
– Punk SQL

• How?
– Flexibility
– Performance

• Who & When



© 2014 MapR Technologies 4

SQL Like Mom Made
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SoH Table Stakes: Warehousing and Business Intelligence

ANSI Syntax
• SELECT, FROM, WHERE, JOIN, 

HAVING, ORDER BY, WITH, 
CTAS, OVER*, ROLLUP*, CUBE*, 
ALL, EXISTS, ANY, IN, SOME

• VarChar, Int, BigInt, Decimal, 
VarBinary, Timestamp, Float, 
Double, etc.

• Subqueries, scalar subqueries*, 
partition pruning, CTE

Interactive SQL Workloads

• Data warehouse offload
• Tableau, ODBC, JDBC
• TPC-H & TPC-DS-like 

workloads

*alpha or imminent

Standard Hadoop Tools

• Supports Hive SerDes
• Supports Hive UDFs
• Supports Hive Metastore
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Punk SQL
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Punk SQL: SQL for a Hadoop World
Modern Syntax

• Path based queries and 
wildcards
– select * from /my/logs/
– select * from /revenue/*/q2

• Modern data types
– Any, Map, Array (JSON)

• Complex Functions and 
Relational Operators
– FLATTEN, kvgen, 

convert_from, convert_to, 
repeated_count, etc

New Workloads

• JSON Sensor analytics
• Complex data analysis
• Alternative DSLs

New Ways to Work

• Query without prep
• Workspaces without admin 

intervention
• Expose query as MapReduce
• Expose query as Spark RDD
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How?
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Flexibility
your tool should 
be flexible…

so you don’t have to be
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Flexibility is a Vision, Usability, a Religion

• Deployment
• Data Model
• Schema
• Security
• Access Methods
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Supporting the Changing Roles of Big Data
Data Dev Circa 2000

1. Developer comes up with 
requirements

2. DBA defines tables

3. DBA defines indices

4. DBA defines FK relationships

5. Developer stores data

6. BI builds reports

7. Analyst views reports

8. DBA adds materialized views

Data Today

1. Developer builds app, 
defines schema, stores 
data

2. Analyst queries data

3. Data engineer fixes 
performance problems or 
fills functionality gaps
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Distributed on Hadoop

Distributed

Single or CLI/Embedded

Drill Deployment is Easy

• Single Daemon for all purposes
• No special considerations for 

scaling or availability
• With or without DFS
• Works with other data systems 

(Mongo, Cassanrda & JDBC 
coming soon)

• Runs on Linux, Mac or Windows
• No separate database
• JSON everything
• Access via HTTP, Java, C, JDBC, 

ODBC, CLI

Drillbit

Drillbit Drillbit Drillbit

Drillbit Drillbit Drillbit

DFS DFS DFS
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Drill Provides A Flexible Data Model

HBase

JSON
BSON

CSV
TSV

Parquet
Avro

Schema-lessFixed schema

Flat 

Complex

Flexibility

Name Gender Age

Michael M 6

Jennifer F 3

{
  name: {
    first: Michael,
    last: Smith
  },
  hobbies: [ski, soccer],
  district: Los Altos
}
{
  name: {
    first: Jennifer,
    last: Gates
  },
  hobbies: [sing],
  preschool: CCLC
}

RDBMS/SQL-on-Hadoop table

Apache Drill table

F
le

xi
bi

lit
y
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Leave Your Data Where it is. Access it Centrally & Uniformly.

• Drill is storage agnostic
• Interacts to storage through 

plugins
• Storage plugins expose optimizer 

rules
– Optimizer rules work directly on 

logical operation to expose 
maximum capabilities

• Reference multiple Hive, HBase, 
MongoDB, DFS, etc systems
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Leverage that Massive Scalable Redundant Infrastructure

Single Store for Data and Metadata
• HDFS is already your single canonical store
• Don’t create a secondary metadata store

Avoid Metadata Management and synchronization
• Store metadata inline

– If you can’t, store it next to files

• Move directories around at will
• Delete things at will
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Flexibility in how you describe your data

• Drill doesn’t require schema, detects file types based on
– extensions
– magic bytes (e.g. PAR1)
– systems settings

• Query can be planned on any file, anywhere
• Data types are determined as data arrives
• Some formats have known schema

– If they don’t, you can expose them as such through views
– Views are simply JSON files that define view SQL
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Product Walkthrough
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Business dataset {
"business_id": "4bEjOyTaDG24SY5TxsaUNQ",
"full_address": "3655 Las Vegas Blvd S\nThe Strip\nLas Vegas, NV 89109",
"hours": {

"M onday": {"close": "23:00", "open": "07:00"},
"Tuesday": {"close": "23:00", "open": "07:00"},
"Friday": {"close": "00:00", "open": "07:00"},
"W ednesday": {"close": "23:00", "open": "07:00"},
"Thursday": {"close": "23:00", "open": "07:00"},
"Sunday": {"close": "23:00", "open": "07:00"},
"Saturday": {"close": "00:00", "open": "07:00"}

},
"open": true,
"categories": ["Breakfast &  Brunch", "Steakhouses", "French", "Restaurants"],
"city": "Las Vegas",
"review _count": 4084,
"nam e": "M on Am i Gabi",
"neighborhoods": ["The Strip"],
"longitude": -115.172588519464,
"state": "NV",
"stars": 4.0,

 "attributes": {
"Alcohol": "full_bar”,

 "N oise Level": "average",
"H as TV": false,
"Attire": "casual",
"Am bience": {

"rom antic": true,
"intim ate": false,
"touristy": false,
"hipster": false,

 "classy": true,
"trendy": false,

 "casual": false
},
"G ood For": {"dessert": false, "latenight": false, "lunch": false,

                        "dinner": true, "breakfast": false, "brunch": false},
}

}
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Reviews dataset

{
  "votes": {"funny": 0, "useful": 2, "cool": 1},
  "user_id": "Xqd0DzHaiyRqVH3W RG7hzg",
  "review _id": "15SdjuK7Dm YqUAj6rjGow g",
  "stars": 5,
  "date": "2007-05-17",
  "text": "dr. goldberg offers everything ...",
  "type": "review ",
  "business_id": "vcNAW iLM 4dR7D2nw w J7nCA"
}
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Zero to Results in 2 minutes
$ tar -xvzf apache-drill-0.7.0.tar.gz

$ bin/sqlline -u jdbc:drill:zk= local

>  SELECT state, city, count(*) AS businesses
  FRO M  dfs.yelp.̀ business.json`
  GRO UP BY state, city
  O RDER BY businesses DESC LIM IT 10;

+ ------------+ ------------+ -------------+
|   state    |    city    |  businesses |
+ ------------+ ------------+ -------------+
| NV         | Las Vegas  | 12021       |
| AZ         | Phoenix    | 7499        |
| AZ         | Scottsdale | 3605        |
| EDH        | Edinburgh  | 2804        |
| AZ         | M esa       | 2041        |
| AZ         | Tem pe      | 2025        |
| NV         | Henderson  | 1914        |
| AZ         | Chandler   | 1637        |
| W I         | M adison    | 1630        |
| AZ         | Glendale   | 1196        |
+ ------------+ ------------+ -------------+

Install

Q uery files and 
directories

Results

Launch shell 
(em bedded 

m ode)
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Intuitive SQL access to complex data
// It’s Friday 10pm  in Vegas and looking for Hum m us

>  SELECT nam e, stars, b.hours.Friday friday, categories
  FRO M  dfs.yelp.̀ business.json  ̀b
  W HERE b.hours.Friday.̀ open  ̀<  '22:00' AND
        b.hours.Friday.̀ close  ̀>  '22:00' AND
        REPEATED_CO NTAINS(categories, 'M editerranean') AND
        city =  'Las Vegas'
  O RDER BY stars DESC
  LIM IT 2;

+ ------------+ ------------+ ------------+ ------------+
|    nam e    |   stars    |   friday   | categories |
+ ------------+ ------------+ ------------+ ------------+
| O lives     | 4.0        | {"close":"22:30","open":"11:00"} | ["M editerranean","Restaurants"] |
| M arrakech M oroccan Restaurant | 4.0        | {"close":"23:00","open":"17:30"} | 
["M editerranean","M iddle Eastern","M oroccan","Restaurants"] |
+ ------------+ ------------+ ------------+ ------------+

Q uery data 
w ith any 
levels of 
nesting
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ANSI SQL compatibility

//Get top cool rated businesses

 SELECT b.nam e from  dfs.yelp.̀ business.json  ̀b 
   W HERE b.business_id IN
  (SELECT r.business_id FRO M  dfs.yelp.̀ review.json  ̀r
   GRO UP BY r.business_id HAVING SUM (r.votes.cool) >  2000 O RDER BY 
   SUM (r.votes.cool) DESC);

+ ------------+
|    nam e |
+ ------------+
| Earl of Sandw ich |
| XS Nightclub |
| The Cosm opolitan of Las Vegas |
| W icked Spoon |
+ ------------+

Use fam iliar SQ L 
functionality (Joins, 

Aggregations, 
Sorting, Sub-

queries, SQ L data 
types)
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Logical views 
//Create a view  com bining business and review s datasets

>  CREATE O R REPLACE VIEW  dfs.tm p.BusinessReview s AS
    SELECT b.nam e, b.stars, r.votes.funny,
           r.votes.useful, r.votes.cool, r.̀ date`
      FRO M  dfs.yelp.̀ business.json  ̀b, dfs.yelp.̀ review.json  ̀r
      W HERE r.business_id =  b.business_id;

+ ------------+ ------------+
|     ok     |  sum m ary   |
+ ------------+ ------------+
| true       | View  'BusinessReview s' created successfully in 'dfs.tm p' schem a |
+ ------------+ ------------+

>  SELECT CO UNT(*) AS Total FRO M  dfs.tm p.BusinessReview s;

+------------+
|    Total   |
+------------+
|  1125458   |
+------------+

Lightw eight file 
system  based 

view s for 
granular and de-
centralized data 
m anagem ent
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Materialized Views AKA Tables
>  ALTER SESSIO N SET ̀ store.form at̀  =  'parquet';

>  CREATE TABLE dfs.yelp.BusinessReview sTbl AS
    SELECT b.nam e, b.stars, r.votes.funny funny,
           r.votes.useful useful, r.votes.cool cool, r.̀ date`
      FRO M  dfs.yelp.̀ business.json  ̀b, dfs.yelp.̀ review.json  ̀r
      W HERE r.business_id =  b.business_id;

+ ------------+ ---------------------------+
|  Fragm ent  | Num ber of records w ritten |
+ ------------+ ---------------------------+
| 1_0        | 176448                    |
| 1_1        | 192439                    |
| 1_2        | 198625                    |
| 1_3        | 200863                    |
| 1_4        | 181420                    |
| 1_5        | 175663                    |
+ ------------+ ---------------------------+

Save analysis 
results as tables 
using fam iliar 
CTAS syntax
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Working with repeated values
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Extensions to ANSI SQL to work with repeated values

// Flatten repeated categories 

>  SELECT nam e, categories
  FRO M  dfs.yelp.̀ business.json  ̀LIM IT 3;

+ ------------+ ------------+
|    nam e    | categories |
+ ------------+ ------------+
| Eric Goldberg, M D | ["Doctors","Health & M edical"] |
| Pine Cone Restaurant | ["Restaurants"] |
| Deforest Fam ily Restaurant | ["Am erican (Traditional)","Restaurants"] |
+ ------------+ ------------+

>  SELECT nam e, FLATTEN(categories) AS categories
  FRO M  dfs.yelp.̀ business.json  ̀LIM IT 5;
+ ------------+ ------------+
|    nam e    | categories |
+ ------------+ ------------+
| Eric Goldberg, M D | Doctors    |
| Eric Goldberg, M D | Health & M edical |
| Pine Cone Restaurant | Restaurants |
| Deforest Fam ily Restaurant | Am erican (Traditional) |
| Deforest Fam ily Restaurant | Restaurants |
+ ------------+ ------------+

Dynam ically 
flatten repeated 
and nested data 
elem ents as part 
of SQ L queries. 

No ETL necessary
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Extensions to ANSI SQL to work with repeated values

// Get m ost com m on business categories
 
> SELECT category, count(*) AS categorycount
  FRO M  (SELECT nam e, FLATTEN(categories) AS category
        FRO M  dfs.yelp.̀ business.json )̀ c
  GRO UP BY category O RDER BY categorycount DESC;

+ ------------+ ------------+
|  category  | categorycount|
+ ------------+ ------------+
| Restaurants | 14303      |
…
| Australian | 1          |
| Boat Dealers | 1          |
| Firew ood   | 1          |
+ ------------+ ------------+
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Working with Dynamic Columns
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Check ins dataset { 
   "checkin_info":{ 
      "3-4":1,
      "13-5":1,
      "6-6":1,
      "14-5":1,
      "14-6":1,
      "14-2":1,
      "14-3":1,
      "19-0":1,
      "11-5":1,
      "13-2":1,
      "11-6":2,
      "11-3":1,
      "12-6":1,
      "6-5":1,
      "5-5":1,
      "9-2":1,
      "9-5":1,
      "9-6":1,
      "5-2":1,
      "7-6":1,
      "7-5":1,
      "7-4":1,
      "17-5":1,
      "8-5":1,
      "10-2":1,
      "10-5":1,
      "10-6":1
   },
   "type":"checkin",
   "business_id":"Jw UE5Gm EO -sH1Fuw JgKBlQ "
}
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Makes it easy to work with dynamic/unknown columns
>  jdbc:drill:zk= local>  SELECT KVG EN (checkin_info) checkins 
   FRO M  dfs.yelp.̀ checkin.json  ̀LIM IT 1;
+ ------------+
|  checkins  |
+ ------------+
| [{"key":"3-4","value":1},{"key":"13-5","value":1},{"key":"6-6","value":1},{"key":"14-5","value":1},{"key":"14-
6","value":1},{"key":"14-2","value":1},{"key":"14-3","value":1},{"key":"19-0","value":1},{"key":"11-5","value":1},
{"key":"13-2","value":1},{"key":"11-6","value":2},{"key":"11-3","value":1},{"key":"12-6","value":1},{"key":"6-
5","value":1},{"key":"5-5","value":1},{"key":"9-2","value":1},{"key":"9-5","value":1},{"key":"9-6","value":1},
{"key":"5-2","value":1},{"key":"7-6","value":1},{"key":"7-5","value":1},{"key":"7-4","value":1},{"key":"17-
5","value":1},{"key":"8-5","value":1},{"key":"10-2","value":1},{"key":"10-5","value":1},{"key":"10-6","value":1}] |
+ ------------+

>  jdbc:drill:zk= local>  SELECT FLATTEN(KVGEN(checkin_info)) checkins 
FRO M  dfs.yelp.̀ checkin.json  ̀lim it 6;

+ ------------+
|  checkins  |
+ ------------+
| {"key":"3-4","value":1} |
| {"key":"13-5","value":1} |
| {"key":"6-6","value":1} |
| {"key":"14-5","value":1} |
| {"key":"14-6","value":1} |
| {"key":"14-2","value":1} |
+ ------------+

Convert M ap w ith 
a w ide set of 
dynam ic colum ns 
into an array of 
key-value pairs
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Makes it easy to work with dynamic/unknown columns

// Count total num ber of checkins on Sunday m idnight

 jdbc:drill:zk= local>  SELECT SUM (checkintbl.checkins.̀ value )̀ as 
SundayM idnightCheckins FRO M  

   (SELECT FLATTEN (KVG EN (checkin_info)) checkins
    FRO M  dfs.yelp.checkin.json )̀ checkintbl 
    W HERE checkintbl.checkins.key= '23-0';

+ ------------------------+
| SundayM idnightCheckins |
+ ------------------------+
| 8575                   |
+ ------------------------+
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Secure Access
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Access control that scales

PAM Authentication + 
User Impersonation
 

Fine-grained row and 
column level access control 
with Drill Views – no 
centralized security 
repository required

Files HBase Hive

Drill 
View 1

Drill 
View 2

UUU

User

User
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Granular security permissions through Drill views

Name City State Credit Card #

Dave San Jose CA 1374-7914-3865-4817

John Boulder CO 1374-9735-1794-9711

Raw File (/raw/cards.csv)
Owner
Admins

Permission 
Admins

Business Analyst Data Scientist

Name City State Credit Card #

Dave San 
Jose

CA 1374-1111-1111-1111

John Boulder CO 1374-1111-1111-1111

Data Scientist View 
(/views/maskedcards.csv)

Not a physical data copy

Name City State

Dave San 
Jose

CA

John Boulder CO

Business Analyst View

Owner
Admins

Permission 
Business 
Analysts

Owner
Admins

Permission 
Data

Scientists
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Secure your data without an extra service 

• Drill Views 
• Ownership chaining with 

configurable delegation TTL
• Leverages existing HDFS 

ACLs
• Complete security solution 

without additional services or 
software

MaskedSales.view
owner: Cindy

GrossSales.view
owner: dba

RawSales.parquet
owner: dba

Frank file 
view perm

Cindy file 
view perm

dba 
delegated 
read

2-step
 ow

n ersh
ip

 chai n

SQL by 
Frank
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Summary

• Logical
– No physical data copies/silos

• Granular
– Row level and column level security controls

• De-centralized
– User impersonation respecting storage system permissions
– No separate permission repository for granular controls
– Integrated with Hadoop File System permissions and LDAP

• Self-service w/ governance
– If you have access to data, you control who and how widely can access it
– Audits
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Core Drill Architectural Goals

• Go fast when you don’t know anything
– And do “the right thing”

• Go faster when you do know things
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An Optimistic, Pipelined Purpose-Built DAG Engine

• Three-Level DAG
• Major Fragments (phases)
• Minor Fragments (threads)
• Operators (in-thread operations)

> explain plan for select * from customer limit 5;
…
00-00    Screen
00-01      SelectionVectorRemover
00-02        Limit(fetch=[5])
00-03          UnionExchange
01-01            ProducerConsumer
01-02              Scan(groupscan=[ParquetGroupScan […
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Each phase (MajorFragment) gets Parallelized (MinorFragment)

1:0 1:1 1:2 1:3

0:0
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Reading Data Quickly, Moving Data Quickly

• Highly Optimized Native Drill Readers:
– Vectorized Parquet, Text/CSV, JSON
– Also works with all Hive supported formats

• Drill supports partition pruning
– Adding direct physical property exposure soon for highly optimized 

cases

• Drill parallelizes to maximum level format allows
– Also balances data locality and maximum parallelization

• Bespoke Asynchronous Zero-Copy RPC Layer
– Built specifically for Drill’s internal data format
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Parquet: The Format for the next decade

Apache Drill & Apache Parquet communities working together
• Better Ecosystem integration and decentralized metadata

– Self Description capabilities
– Ecosystem support for logical data types

• Enhanced Performance
– New vectorized reading
– Enhanced memory pooling and management
– Indexing*
– Better metadata positioning (for improved page pruning)*
– Enhanced vectorization and late materialization reading*

*In progress



© 2014 MapR Technologies 42

DISKDISK

Value Vectors & Record Batches: Drill’s In-memory Columnar Work Units

• Random access: sort without copy or 
restructuring

• Fully specified in memory shredded complex 
data structures 

• Remove serialization or copy overhead at 
node boundaries

• Spool to disk as necessary
• Interact with data in Java or C without copy 

or overhead

Drill BitDrill Bit

Memory 
overflow

 uses disk
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Runtime Compilation and Multi-phased planning

• Drill does best effort initial query parsing, planning and validation
– Where Drill doesn’t understand data, it provides support for ANY type, 

allowing late type binding.

• At execution time, individual nodes do secondary pass
– Schema <--> Query parsing and validation
– Type casting, coercion and promotion
– Compilation based on schema requirements

• As schema changes, Drill supports recompilation of each 
operator as necessary
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Runtime Compilation Pattern

Custom
Bytecode 

Optimization

Custom
Bytecode 

Optimization

Bytecode 
Merging
Bytecode 
Merging

Janino 
compilation

Janino 
compilation

CodeModel 
Generated 

Code

CodeModel 
Generated 

Code

Precompiled 
Bytecode 
Templates

Precompiled 
Bytecode 
Templates Loaded ClassLoaded Class

UDFsUDFs Source Code 
Transformation
Source Code 

Transformation

Bytecode 
Merging
Bytecode 
Merging
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Advanced Compilation Techniques

• Optimization based on observation and assembly
• Drill does a number of pre-machine-code-compilation 

optimizations to ensure efficient execution
• Some examples:

– Removal of type and bounds checking 
– Direct micro pointers for in-record-batch references
– Little endian data formats 
– Bytecode-level scalar replacement
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Drill Does Vectorization & Supports Columnar Functions

• Drill often operates on more than one record at a time
– Word-sized manipulations
– SIMD instructions
– Manually coded algorithms

• Columnar Functions Improve Many Operations
– Bitmaps allow lightning fast null-checks and reduction in branching
– Type demotion to reduce memory and CPU computation overhead 
– Direct Conversions where possible
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Drill provides advanced query telemetry

• What happened during query for all three levels of DAG 
execution

• Each profile is stored as JSON file for easy review, sharing and 
backup (at end of query execution)

• Profiles can be analyzed using Drill, allows:
– easy longitudinal analysis of workload
– multi-tenancy performance analysis
– impact of configuration changes to benchmark workloads
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A Color-coded visual layout and Gant timing chart is provided
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Memory Efficiency

• Drill’s in memory representation is designed to minimize memory 
overhead

• Custom implementation of columnar-aware data structures 
including hash tables, sort operations, etc.
– For example, entry overhead for hash table is 8 bytes per value
– Sort pointer overhead for sort is 2 to 4 bytes per entry

• Adding support for compressed columnar representation further 
to improve compactness
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Scale and Concurrency
• Drill’s execution model leverages both local and remote exchanges for changes in 

parallelization
– Muxing Local, Demuxing Local, Broadcast, Hash to Merge, Hash to Random, Ordered 

Partition, Single Merge, Union

• All operations can be parallelized at the thread and node level
• Thread count and parallelization are influenced by data size, query phasing and 

system load
– Administrators have basic queuing control to manage workload

• All threads are independent and pipelined, all run in a single process per node
• Node <> node communication is multiplexed, push-based with sub-socket back-

pressure support
• Testing has proceeded up to 150 nodes.  Target is 1000 nodes by GA.

– Drill adapts data transfer size, buffers, muxing and other operations based on query scale to 
minimize n2 multiplier effects
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