

High Performance Time Series Databases

Agenda

- What is anomaly detection?
- Some examples
- Some generalization
- Compression == Truth
- Deep dive into deep learning
- Why this matters for time series databases

Who I am

 Ted Dunning, Chief Application Architect, MapR <u>tdunning@mapr.com</u> <u>tdunning@apache.org</u> @ted_dunning

- Committer, mentor, champion, PMC member on several Apache projects
- Mahout, Drill, Zookeeper others

Who we are

- MapR makes the technology leading distribution including Hadoop
- MapR integrates real-time data semantics directly into a system that also runs Hadoop programs seamlessly
- The biggest and best choose MapR
 - Google, Amazon
 - Largest credit card, retailer, health insurance, telco
 - Ping me for info

What is Anomaly Detection?

- What just happened that shouldn't?
 - but I don't know what failure looks like (yet)

- Find the problem before other people see it
 - especially customers and CEO's

• But don't wake me up if it isn't really broken

What Are We Really Doing

- We want action when something breaks (dies/falls over/otherwise gets in trouble)
- But action is expensive
- So we don't want false alarms
- And we don't want false negatives

• We need to trade off costs

A Second Look

A Second Look

99.9%-ile

How Hard Can it Be?

On-line Percentile Estimates

- Apache Mahout has on-line percentile estimator
 - very high accuracy for extreme tails
 - new in version 0.9 !!

• What's the big deal with anomaly detection?

• This looks like a solved problem

Already Done? Etsy Skyline?

What About This?

Spot the Anomaly

t (seconds)

 $\ensuremath{\mathbb{C}}$ MapR Technologies, confidential

MAPR.

Where's Waldo?

t (seconds)

Normal Isn't Just Normal

• What we want is a *model* of what is normal

• What doesn't fit the model is the anomaly

• For simple signals, the model can be simple ... $X \sim M(0, \mathcal{E})$

• The real world is rarely so accommodating

 $\mathbf{X}_{\mathbf{C},\mathbf{N}}$

 $\mathbf{x}_{\mathbf{x}}$

۲۷

Windows on the World

- The set of windowed signals is a nice model of our original signal
- Clustering can find the prototypes
 - Fancier techniques available using sparse coding

- The result is a dictionary of shapes
- New signals can be encoded by shifting, scaling and adding shapes from the dictionary

Most Common Shapes (for EKG)

Reconstructed signal

 $\mathbf{V}_{\mathbf{C},\mathbf{N}}$

Close-up of anomaly

A Different Kind of Anomaly

APR

Model Delta Anomaly Detection

The Real Inside Scoop

- The model-delta anomaly detector is really just a sum of random variables
 - the model we know about already
 - and a normally distributed error

• The output (delta) is (roughly) the log probability of the sum distribution (really $\delta 2$)

• Thinking about probability distributions is good

Example: Event Stream (timing)

- Events of various types arrive at irregular intervals
 - we can assume Poisson distribution

• The key question is whether frequency has changed relative to expected values

• Want alert as soon as possible

Poisson Distribution

• Time between events is exponentially distributed

$\Delta t \sim \overline{\mathcal{A}} e^{\lambda t}$

• This means that long delays are exponentially rare

$$P(\Delta t > T) = \bar{e}^{\lambda T}$$
$$-\log P(\Delta t > T) = \lambda T$$

- If we know λ we can select a good threshold
 - or we can pick a threshold empirically

Recap (out of order)

- Anomaly detection is best done with a probability model
- -log p is a good way to convert to anomaly measure
- Adaptive quantile estimation works for autosetting thresholds

Recap

- Different systems require different models
- Continuous time-series
 - sparse coding to build signal model
- Events in time
 - rate model base on variable rate Poisson
 - segregated rate model
- Events with labels
 - language modeling
 - hidden Markov models

But Wait! Compression is Truth

- Maximizing log πk is minimizing compressed size

- (each symbol takes -log πk bits on average)

- Maximizing log πk happens where $\pi k = pk$
 - (maximum likelihood principle)

But Auto-encoders Find Max Likelihood

• Minimal error => maximum likelihood

• Maximum likelihood => maximum compression

• So good anomaly detectors give good compression

In Case You Want the Details

$$E[\rho_k \log \pi_k] = \sum_k \rho_k \log \pi_k$$

$$\log x \le x - 1$$

$$\sum_k \rho_k \log \frac{\pi_k}{\rho_k} \le \sum_k \rho_k \left(1 - \frac{\pi_k}{\rho_k}\right) = \sum_k \rho_k - \sum_k \pi_k = 0$$

$$\sum_k \rho_k \log \pi_k - \sum_k \rho_k \log \varphi_k \le 0$$

$$\sum_k \rho_k \log \pi_k \le \sum_k \rho_k \log \rho_k$$

$$E[\rho_k \log \pi_k] \approx \frac{1}{n} \sum_i \log \pi_{x_i}$$

0.0 0.5 1.0 1.5 2.0

Pause To Reflect on Clustering

- Use windowing to apportion signal
 - Hamming windows add up to 1
- Find nearest cluster for each window
 - Can use dot product because all clusters normalized
- Scale cluster to right size
 - Dot product again
- Subtract from original signal

 $\sum_{i=1}^{n}$

Auto-encoding - Information Bottleneck

Clustering as Neural Network

Overlapping Networks

Time series input

Reconstructed time series

Deep Learning

 $\mathbf{x}_{\mathbf{x}}$

What About the Database?

- We don't have to keep the reconstruction
- We can keep the first level nodes
 - And the reconstruction error
- To keep the first level nodes
 - We can keep the second level nodes
 - Plus the reconstruction error

What Does it Matter?

- Even one level of auto-encoding compresses
 - 30-50x in EKG example with k-means

- Multiple levels compress more
 - Understanding => Truth => Compression

• Higher levels give semantic search

How Do I Build Such a System

- The key is to combine real-time and long-time
 - real-time evaluates data stream against model
 - long-time is how we build the model
- Extended Lambda architecture is my favorite
- See my other talks on slideshare.net for info
- Ping me directly

Hadoop is Not Very Real-time

Real-time and Long-time together

Who I am

 Ted Dunning, Chief Application Architect, MapR <u>tdunning@mapr.com</u> <u>tdunning@apache.org</u> @ted_dunning

- Committer, mentor, champion, PMC member on several Apache projects
- Mahout, Drill, Zookeeper others

