
Application performance management
with open source tools

Monica Sarbu & Tudor Golubenco
(@monicasarbu & @tudor_g)

Intro

• Software devs

• Worked at a startup doing a VoIP monitoring product

• Startup acquired by Acme Packet, acquired by Oracle

• Working on @packetbeat

Scaling

• Infrastructure:

• scale to 100s, 1.000s, 10.000s of servers

• Organization:

• scale to 100s, 1.000s, 10.000s of employees

Conway’s law

• “Organizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these
organizations"

First org chart

First org chart

Microservices

Microservices

Evolution

• Applications evolve over
time

• Adapt to new
requirements

• Mutations are kind of
random

• You need to select the
good mutations

Operational monitoring

• Critical

• It’s how you filter out the bad mutations and keep the good ones

• Difficult

• Highly heterogenous infrastructures

• Show the global state of a distributed system

monitoring and
troubleshooting distributed

applications

Requirements

• Scalable and reliable

• Extract data from different sources

• Low overhead

• Low configuration

• Simple, easy to understand

Start from the communication

• The communication between
components gets you the big
picture

• Protocols are standard

• Packet data is objective

• No latency overhead

Packetbeat

• First public version in 05.2014

• Open Source, written in Golang

What is Packetbeat?
¯_(ツ)_/¯

Packetbeat shipper

• Running on your application servers

• Follows TCP streams, decodes upper layer protocols like HTTP,
MySQL, PgSQL, Redis, Thrift-RPC, etc

• Correlates requests with responses

• Captures data and measurements from transactions and
environment

• Exports data in JSON format

{
 "client_ip": "127.0.0.1",
 "client_port": 46981,
 "ip": “127.0.0.1",
 "query": "select * from test",
 "method": "SELECT",
 "pgsql": {
 "error_code": "",
 "error_message": "",
 "error_severity": "",
 "iserror": false,
 "num_fields": 2,
 "num_rows": 2
 },
 "port": 5432,
 "responsetime": 12,
 "bytes_out": 95,
 "status": "OK",
 "timestamp": "2015-05-27T22:27:57.409Z",
 "type": "pgsql"
}

What do we do with the data?
¯\(°_o)/¯

The traditional way

• Decide what metrics you need (requests per second for each
server, response time percentiles, etc.)

• Write code to extract these metrics, store them in a DB

• Store the transactions in a DB

• But:

• Each metric adds complexity

• Features like drilling down and top N are difficult

Packetbeat + ELK

Why ELK?

• Already proven to scale and perform for logs

• Clear and simple flow for the data

• Don’t have to create the metrics beforehand

• Powerful features that become simple:

• Drilling down to the transactions related to a peak

• Top N features are trivial

• Slicing by different dimensions is easy

visualizing the data

Percentile values over time

• Combines date histogram and percentiles aggregations

Percentiles aggregation

• 95th percentile means that 95% of the values are smaller it

Response

Percentiles aggregation

• Approximate values

• T-digests algorithm by Ted Dunning

• Accurate for small sets of values

• More accurate for extreme percentiles

Date histogram

• Splits data in buckets of time

• Example:

Date histogram nested with percentiles

Response

Kibana config

Latency histogram

Histogram by response time

• Splits data in buckets by response time

• [0-10ms), [10ms-20ms), …

Response

Add a date histogram

Response times repartition

Kibana config

Slowest RPC methods

• Combines terms and percentiles aggregations

Terms aggregation
• Buckets are dynamically built: one per unique value

• By default: top 10 by document count

• Approximate because each shard can have a different top 10

Order by 99th percentile

Kibana config

Tips
• Live demo: http://demo.elastic.co/packetbeat/

• All examples here: https://github.com/tsg/bbuzz2015

• Use Sense (chrome add-on)

from __future__ import beats

Future plans

• Packet data is just the beginning

• Other sources of operational data:

• OS readings: CPU, memory, IO stats

• Code instrumentation, tracing

• API gateways

• Common servers internal stats (Nginx, Elasticsearch)

Joining Elastic

ship operational
data to

elasticsearch

The Beats

• Packetbeat - data from the wire

• Filebeat (Logstash-Forwarder) - data from log files

• Future:

• Topbeat - CPU, mem, IO stats

• Metricsbeat - arbitrary metrics from nagios/sensu like scripts

• RUMbeat - data from the browser

Stay in touch

• @packetbeat

• https://discuss.elastic.co/c/beats

• Sign up for the webinar:

• https://www.elastic.co/webinars/beats-platform-for-leveraging-
operational-data

https://www.elastic.co/webinars/beats-platform-for-leveraging-operational-data

